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FOREWORD

Welcome to Agent 2006, co-hosted by Argonne National Laboratory and The University of
Chicago, in association with the North American Association for Computational Social and
Organizational Science (NAACSOS). Thisis the seventh year of the Agent conference series. As
at previous meetings, this year’s conference maintains a three theme organization: (1) methods,
toolkits, and techniques; (2) computational social theory; and (3) social simulation applications.
These priorities have helped us attract quality papers and thus, keep the conference fresh and
stimulating.

The broader theme of the 2006 conference is Results and Prospects. It has been a decade since
Josh Epstein and Rob Axtell published their Sugarscape model, and it rapidly became an
exemplar for the use of agent modeling to explore social simulation dynamics. It thus seems like
an appropriate time to assess the achievements of this approach. What progress has been
achieved? What near-term goals can be achieved within present assumptions? What should be
considered the research horizons of the social agent simulation paradigm?

Our invited speakers — Uri Wilensky, Scott Page, and Noshir Contractor — are making creative
contributions within, and to, social agent modeling. Their contributions have helped to shape
areas that are diverse and significant, such as user-friendly development environments, dynamic
models of culture, and network-based applications. Such themes provide a rich context for the
array of papers that precede and follow the invited talks.

The overall combination of conference presentations will allow us to explore the present results
and future prospects of this productive modeling paradigm. We hope that you will find the
conference to be both educational and stimulating. We appreciate your participation and look
forward to future contributions as well.

Finaly, we hope you enjoy Agent 2006 and become increasingly committed to the kinds of
social science progress that computational modeling makes possible. Once again, welcome.

The Center for Complex Adaptive Agent Systems Simulation
Argonne National Laboratory and The University of Chicago

David L. Sallach
Charles M. Macal
Michagl J. North
Thomas D. Wolsko
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BREEDING FASTER TURTLES:
PROGRESS TOWARDS A NETLOGO COMPILER

F. SONDAHL,* Northwestern University, Evanston, IL
S. TISUE, Northwestern University, Evanston, IL
U. WILENSKY, Northwestern University, Evanston, IL

ABSTRACT

Despite the stereotype concerning their biological counterparts, NetLogo's turtles are fast.
NetLogo (Wilensky 1999a) contains a sophisticated interpreter that has been highly
optimized. Nevertheless, NetLogo turtles aren't as fast as they could be. Interpretation
necessarily incurs a performance penalty. Thus, we are in the process of replacing
NetLogo's interpreter with a compiler. This transition is happening in phases. In this
paper, we discuss the architecture of NetLogo's interpreter and explain the first phase of
the transition to compilation, which uses inlining to generate efficient bytecode from
abstract syntax trees. This technique measurably reduces the interpreter overhead, while
permitting a gradual transition to a compiled architecture. We approach the task of
compiler design from the perspective of a powerful agent based modeling language with
“low threshold” design goals. Preliminary benchmark results are presented, in addition to
a forecast of further steps towards a full NetLogo compiler.

Keywords: NetLogo, compilers, performance, agent based modeling,
Java Virtual Machine

INTRODUCTION

Despite the stereotype concerning their biological counterparts, NetLogo's turtles are fast.
NetLogo (Wilensky 1999a) contains a sophisticated interpreter that has been highly optimized.
Nevertheless, NetLogo turtles aren't as fast as they could be. We are working to remedy this.
Because the use of even a sophisticated interpreter incurs a necessary performance penalty, we
are in the process of replacing NetLogo's interpreter with a compiler. To better understand the current
development focus, it is helpful to discuss the historical background and philosophical
motivation of NetLogo.

The design of the original Logo language was guided by the slogan “low threshold, high
ceiling” (Papert 1980). NetLogo upholds this tradition (Tisue & Wilensky 2004). It should be
easy for new users to learn NetLogo and build models, but it should also be possible for
advanced modelers to build “research-grade” models. There are inevitable trade-offs between
these two design goals. NetLogo’s adoption by thousands of modelers, from rank novices to
veteran hackers, suggests that a healthy balance between these goals is being achieved.

Largely for reasons of “low threshold”, NetLogo was originally implemented as an
interpreted language. Even though a compiler would make models run faster, building a compiler
is time-consuming and would not help lower NetLogo’s threshold. Early development effort

*  Corresponding author address: Forrest Sondahl, EECS Tech Institute C359, 2145 Sheridan Rd, Evanston IL
60208-0834; e-mail: forrest@northwestern.edu



was better spent in other directions (e.g., building an integrated development environment and
adding features). As NetLogo matured and was more widely adopted by the research
community, speed became a ceiling issue for advanced users. In response, the interpreter was
substantially restructured and tuned for performance. This resulted in dramatic speed
improvements, but eventually we felt that further significant improvements could only be
achieved through compilation.

We should note that compilation and interpretation are not mutually exclusive
approaches. The Java language is a prime example (Gosling et al. 1996). Java source code is
compiled to an intermediate form (bytecode), which is interpreted by the Java Virtual Machine
(JVM). Similarly, NetLogo source code is first transformed from text to an intermediate form
(arrays of abstract syntax trees), which are then interpreted by the NetLogo interpreter (Tisue &
Wilensky 2004). Although this system is quite fast when compared to naive interpreter
implementations, it still results in measurable overhead costs when compared to models written
in pure Java. To move beyond this performance barrier, we decided to compile the NetLogo
language directly into JVM bytecode.

Building a new compiler from the ground up was problematic for several reasons. First,
NetLogo’s code base is now large — there are over 300 built-in language "primitives" in
NetLogo. Each primitive is implemented as a Java class. This large body of Java code represents
a substantial investment of development time, which we wanted to leverage for use by the
compiler. Second, there are features of the NetLogo language that can be smoothly handled by
an interpreter, but would frustrate the implementation of a traditional compiler — for example, the
frequent context switching as various agents execute their code, to simulate concurrent activity.
We are not suggesting that traditional compiler-writing methods are inapplicable to the NetLogo
language — in fact, we will be employing them later (see “Future Work™ below). However, for
the first phase of development we chose an alternative method which achieves significant
performance gains, while integrating seamlessly with NetLogo's existing interpreter, and
maintaining most of the flexibility of language development that the interpreted system provided.
This integration is a strong first step in NetLogo's transition towards a complete compiler system
targeting the Java Virtual Machine platform.

IMPLEMENTATION
Bytecode Inlining Overview

Our hybrid solution involves combining the existing interpreter with partial compilation.
One important aspect of the new compiler is a technique we call “JVM bytecode inlining”. The
NetLogo interpreter itself is running on the JVM platform, which means that each of the
primitives accepted by the NetLogo interpreter maps to some sequence of JVM bytecode that
gets executed. Our bytecode inliner extracts this sequence and inserts it into the compiled code.
Inlining avoids the overhead of calling the sequence as a separate method, which is what the
NetLogo interpreter had to do. The combined sequences of bytecode are then dynamically
loaded as a single new Java method. The end result is similar to the output that would be given



by a traditional compiler. However, we avoid some of the complexity of a full-blown compiler,
because we are able to “steal” the bytecode that was pre-compiled by a traditional Java compiler
(e.g., Sun's javac ). Another simplification is that at present we are only compiling individual
NetLogo commands (and their arguments), not yet sequences of commands; the interpreter still
moves from command to command and handles procedure calls. For the task of bytecode
extraction and generation we use ASM, which is a small and fast Java bytecode manipulation
framework (Bruneton et al. 2002).

Bytecode Inlining Example

Conceptually, we can think of the bytecode inlining process as NetLogo dynamically
extending the pool of primitives in the interpreter's repertoire, by replacing a command’s entire
abstract syntax tree with a single combined primitive that we synthesize to do the task more
efficiently.

The text of a NetLogo program is first lexically parsed and tokenized. An array of
abstract syntax trees is created, variable references are resolved, nested command blocks are
linearized, etc. Eventually, the output is a NetLogo Procedure object, which consists of an
array of Command objects, each of which is the root of a tree containing Reporter objects. All
NetLogo primitives fall into these two categories, reporters (e.g., +, sin, patch-ahead) and
commands (e.g., rt, fd, print). Reporters return ("report", in our terminology) values;
commands do not — they simply “perform” some action.

For clarification of the bytecode inlining process, we will present a step-by-step example
for a simple code fragment: “rt (a + 5)”. This NetLogo code causes a turtle (agent) to turn
(change its heading) (a + 5) degrees to the right, as shown in the right-hand side of Figure 1.
On the left-hand side of Figure 1 there is a graphical depiction of the abstract syntax tree created
by NetLogo's parser. As mentioned above, each node of the tree is a Java object. For instance,

“rt” maps to an instance of class “ right”, a subclass of Command. Similarly, “+” maps to the
class “ to the class

13

w_9
a

plus”,
_turtlevariable”, and “5” to the class S mmm— > 5 o 5
“ constdouble”, subclasses of Reporter. These
classes each define an execution method. t

Command classes define a “perform()” method "rt(a+5)"
(with a void return type), and reporter classes |

define a “report ()” method (with an Object
return type).

+

/\

For this example, we will denote the a 5

instances of classes _right, _plus,
_turtlevariable, and constdouble,as R, P, T,
and C respectively (see Listing 1). The NetLogo
interpreter would evaluate our example tree by FIGURE 1: Abstract syntax tree




calling the R.perform(). This method
in turn would call P.report (), which
would call the report () methods for
each of P's children nodes (T and C), _right (object R):  "rt"

add the results together, and return the _plus (object P):  "+"
result to R's perform() method, which
would then change the executing agent's

LISTING 1: Textual representation of the tree

_turtlevariable (object T): "a

heading by the appropriate number of _constdouble (object C): "5.0"
degrees.  Pseudo-code is shown in

.. Underscored words correspond to Java classes
Listing 2.

representing NetLogo language primitives.

Instead of stopping with the

abstract syntax tree, the new NetLogo compiler processes the tree to create JVM bytecode. First
it performs a post-order traversal of the tree (e.g. order: a 5 + rt). For each node it visits, we
use ASM's ClassReader to extract the bytecode from the perform() or report () method that
would have been called by the interpreter (e.g.  constdouble.report(),
_turtlevariable.report (), etc). We perform some minor transformations on the extracted
bytecode before passing it to ASM's ClassWriter, to generate the perform() method of our
new class. Instead of transferring “return” statements from the extracted method to the
generated method, it leaves the result that would have been returned on the JVM operand stack.
When the traversal is finished, the resulting class is written to a byte array, and dynamically
loaded into the JVM using a custom ClassLoader. We create a new object G from the newly
loaded class.

The pseudo-code that is representative of the transformation is shown in Listing 3. A
textual representation of the JVM bytecode that is produced by the new bytecode compiler is
shown in Listing 4. Note that the tree which originally consisted of four objects (R, P, T, and C)
was replaced by a flattened version with just one object (G).

LISTING 2: Pseudo-code for interpreted system

R.perform() :
context.agent.turnRight ( P.report() ) ;

P.report():
return C.report() + T.report() ;

C.report():
// C has a member field that holds the constant value, 5
return C.storedValue ;

T.report():
// The symbol "a" corresponds to an index into a variable array
// For this example, assume the index, T.variable number, is 7.
return context.agent.getTurtleVariable( T.variable number ) ;



LISTING 3: Pseudo-code for the bytecode
G.perform() :

context.agent.turnRight ( 5 + context.agent.getTurtleVariable( 7 ) ) ;

LISTING 4: Simplified* JVM bytecode that results from compiling “rt (a + 5)”

G.perform() :

ALOAD 1 // push the “context” onto stack
GETFIELD Context.agent : Lagent; // get the current context's agent
BIPUSH 7 // push 7 onto stack

INVOKEVIRTUAL Agent.getTurtleVariable // get Object stored in var 7
CHECKCAST Double // check that var 7 held a number
INVOKEVIRTUAL Double.doubleValue ()D // convert Double Object -> double
LDC 5.0 // push 5 onto stack

DADD // now “a + 5” is on stack

DSTORE 2 // store “a + 5” in JVM local #2
ALOAD 1 // push “context” onto stack
GETFIELD Context.agent : Lagent; // get the current context's agent
CHECKCAST Turtle // make sure agent is a Turtle
DLOAD 2 // load “a + 5” back onto stack
INVOKEVIRTUAL Turtle.turnRight (D)V // cause turtle to “rt (a + 5)”

*Package names have been omitted for brevity. Actual compiler output contains additional bytecode
for runtime type-checking and error handling, which has been omitted for clarity.

Bytecode Inlining Advantages
Several aspects of this process increase performance:

1. Constant values. In the old system, constant values that are known at compile time --
such as 5 and 7 (the turtle-variable index) -- were stored in member fields. In the new
system, they are hard coded as more efficient PUSH or LDC bytecode instructions.

2. Casting. The old interpreter's report () methods only return generic Objects, and the
calling method must check the return type and cast it to the appropriate type. The new
compiler is often able to perform this type checking at compile-time, and generate the
appropriate bytecode, omitting the unnecessary casting.

3. Primitive type checking. Similarly, the new compiler is able to deal more efficiently with
Java's primitive types — e.g. booleans and doubles — avoiding many cases where the
interpreter was forced to “box” the results as Boolean or Double objects.

4. Method invocations. The old system required four perform/report method invocations,
whereas the new system only requires one.
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We conducted several tests to approximately measure the comparative influence of these
aspects on increasing performance. Optimization of constant values (#1) accounted for around
4% of the performance improvement, whereas the type conversion aspects (#2 and #3) accounted
for roughly 50%. Decreasing the number of method invocations (#4) is credited with the
remaining 46% of the speedup.

Another aspect that could be contributing to the performance increase is synergy with JIT
(just in time) compilers. Inlining method bytecode creates larger contiguous sections of
bytecode in a single method, which can improve opportunities for standard intraprocedural
compiler optimizations, particularly when the inlined method bodies are simple (e.g., Scott 2000;
Bellotti et al. 2004 ). It is our hope that JIT compilers can better optimize our generated
bytecode. As of yet, we have not measured the influence of bytecode generation on JIT
compilers. Since Sun Microsystems' HotSpot compiler performs its own form of “class-
hierarchy aware” method inlining (Paleezny et al., 2001), it is unclear whether synergistic
interaction is occurring. Further benchmarking is required to examine this issue.

PERFORMANCE RESULTS
Performance Benchmarks

In our graphs, “Cur” denotes the current development build of NetLogo as of July 21,
2006, with compilation disabled, and “Cur+” denotes the same build with compilation enabled.
All benchmarking was done on a 3.2 Ghz Pentium 4 with 2 GB of RAM, running Windows XP
Professional. The results shown in Figure 2 used Sun's Java 2 Runtime Environment version
1.5.0_06, with the HotSpot(TM) Client VM. The results shown in Figures 3 and 4 used Sun's
Java 2 Runtime Environment version 1.4.2 10, with the HotSpot(TM) Server VM. All
benchmarks were run with the graphical display disabled, to better measure engine speed.

Figure 2 presents a view of the history of performance in NetLogo on one particular
benchmark, the so-called “GasLab”
benchmark. Our benchmarks are not
synthetic micro-benchmarks; they are 37 GasLab Benchmark
real models from NetLogo's models
library. The GasLab benchmark is based 37
on a model called “GasLab Gas in a =
Box” that demonstrates the Maxwell- © 2
Boltzmann distribution in an ideal gas £
(Wilensky 1997, 1999b).  Figure 2 . oL
shows that performance improvements
came quickly in NetLogo's early days. .
Between versions 1.1 and 1.2, the 1o 11 121 13 20 21 30
interpreter was restructured from a stack- NetLogo version
based to tree-based (Tisue & Wilensky,

2004). Since that time NetLogo hit a  FIGURE 2: NetLogo performance history

12 12 12

1T

3. Cur Cur+
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performance barrier that persisted up until the creation of the new compiler. This breakthrough
cut execution time on the GasLab benchmark to 66% of what it had previously been.

Figures 3 and 4 present a broader perspective on the performance gains attributable to the
compiler. Figure 3 shows the results for each of the 13 benchmarks in NetLogo's benchmark
suite. Note that the performance increase varies considerably between models. For instance, the
bytecode compiler only shaved 5% off of the execution time of the Flocking benchmark (#7),
while the time for the 1-D Cellular Automata benchmark (#13) was nearly cut in half. Figure 4
shows the performance gain across the board; on average, execution time was cut by 23%.

Comments on Performance

For the purposes of this paper, we have limited ourselves to comparing NetLogo against
its past performance. Although it would be interesting to do so, we have not compared
NetLogo's performance against that of other popular agent based modeling platforms, or against
models written in “raw” Java code without the aid of a specialized toolkit. It is often difficult to
make such comparisons fairly, since various modeling platforms suggest different natural
implementations of a given model, as well as different techniques for tuning and optimization.
For further discussion on this topic, and a general review of several popular agent based
modeling toolkits, see Railsback et al. (2006).

The new NetLogo compiler is still very much a work in progress. Not all of NetLogo's
language primitives are yet taking advantage of the new system, and we expect continued
performance increases. Some preliminary tests give us hope that the continuation of this project,
in addition to further forays into bytecode generation (see “Future Work™ below), may eventually
lead to as much as 3x speed improvement over NetLogo 3.1 (i.e. a reduction of execution time to
33% of its previous value).

Benchmark Suite
Overall Performance
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o o
© © =
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FIGURE 3: Bytecode inlining improvement FIGURE 4: Benchmark average
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Will NetLogo performance ever match/surpass the performance of raw Java code? If
both Java and NetLogo are being compiled to bytecode, can't NetLogo language be just as fast?
We expect not, because of differences in the source languages. For example, Java is statically
typed (you must declare variable types — “int n”, “double d”), whereas NetLogo is
dynamically typed (any variable can hold any data type). The conciseness and flexibility of
dynamic typing contributes to NetLogo's low threshold. Static typing allows more type-checking
to be done at compile-time, and thus more efficient bytecode can be produced. Dynamic typing
is one example of a trade-off between “low threshold” and “high performance.”

Note that “low threshold” here isn’t only relevant to novice programmers. Expert users,
too, would pay a cost of slower authoring if type declarations were required. One reason
NetLogo is popular among researchers and other “high-end” users is their ability to rapidly
develop prototype models in NetLogo. In the end, the question is not which language is the
fastest; nobody wants to write agent-based models in assembly language. The pertinent question
is whether the language you want to model in is high level enough to ease development and
maintenance, yet fast enough for your needs.

FUTURE WORK
Towards a NetLogo Compiler

As mentioned earlier, bytecode inlining is just the first phase in implementing a complete
NetLogo compiler. The details we have discussed only involve creating the bytecode to deal
with a single NetLogo command. Compiling the abstract syntax tree for each single command is
effective at boosting performance if expressions are long (e.g., see Listing 5). However, many
NetLogo models have a low command-to-expression-length ratio (e.g., see Listing 6), and in

LISTING 5: A procedure from the NetLogo “CA 1D Elementary” model (Wilensky, 1998a)

to do-rule ;; patch procedure
let left-on? on?-of patch-at -1 0
let right-on? on?-of patch-at 1 0

;; each of these lines checks the local area and (possibly)
;; sets the lower cell according to the corresponding switch
let on?-of patch-at 0 -1

(iii and left-on? and on? and right-on?) or
(iio and left-on? and on? and (not right-on?)) or
(ioi and left-on? and (not on?) and right-on?) or
(ioo and left-on? and (not on?) and (not right-on?)) or
(oii and (not left-on?) and on? and right-on?) or
(oio and (not left-on?) and on? and (not right-on?)) or
(ooi and (not left-on?) and (not on?) and right-on?) or
( ( )

ooo and (not left-on?) and (not on?) and (not right-on?))

end
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LISTING 6: A procedure from the NetLogo “Flocking” model (Wilensky, 1998b)

turn-at-most [turn max-turn] ;5 turtle procedure
ifelse abs turn > max-turn
[ ifelse turn > 0
[ rt max-turn ]
[ 1t max-turn ] ]
[ rt turn ]
end

such cases this technique is not as effective. These models should see a greater performance
increase as we extend the compiler to generate bytecode for more than a single command at a
time, which will be the next the phase of compiler work.

The first step in this direction will be to compile basic (that is, non-branching) blocks of
adjacent commands. In the next step we will extend the compiler to process control structures —
branches, loops, and procedure calls. Finally, whole procedures and entire NetLogo models will
be compiled.

Additional Optimizations

In addition to the core compiler plan outlined above, there are several other promising areas of
optimization work:

® NetLogo language procedures could be inlined. This is a separate issue from the Java
method inlining discussed in this paper, which occurs at the JVM level. The motivation,
however, is much the same. When modelers write short NetLogo procedures that are
called frequently, speed could be increased by inlining that procedure into the calling
NetLogo procedure.

® A type inferencing system could be designed for local variables. Even though NetLogo
is dynamically typed, there are situations where we could detect the type of a variable at
compile time and optimize the code accordingly.

® We have already designed a peephole bytecode optimizer, which removes some
inefficient code that is created during the bytecode generation process. More peephole
optimizations could be introduced.

@® Higher-level optimizations.  NetLogo currently has a variety of sophisticated
optimizations in place. For example, the code snippet “turtles with [color = red]”
reports an agentset of all the red turtles in the world. The primitive “any?” tests whether
or not an agentset is empty. A naive interpreter running the code “if any? turtles
with [color = red]” would first find all the red turtles, and then see if that set is
empty. NetLogo internally rewrites this code to stop looking for red turtles as soon as it
has found one. There are a fair number of such optimizations already in place, but more
could be designed.



14

Caveats

So far, we have only discussed the benefits of inlining. There is also a drawback
associated with inlining that becomes more salient as the amount of bytecode generation
increases — namely “code bloat.” As reported by Bellotti et al (2004), excessive method inlining
in Java can result in decreased performance. Because our bytecode generation technique does
not require the use of any extra JVM local variables, we have reason to hope that we avoid this
negative effect of inlining. But performance issues aside, the JVM imposes a limit of 64
kilobytes for the bytecode of a method body, and so completely inlining the contents of a long
NetLogo procedure into a single method will not be possible. We will need to find a balance
between inlining and method invocation.

A second issue that arises is not particular to inlining, but is a consequence of generating
bytecode. NetLogo allows models to be saved as Java applets, which can then be run in a web
browser. Currently, the applet embeds our interpreter. With the compiler, the model would need
to be compiled before it could be run; however, for security reasons unsigned applets may not
load dynamically generated bytecode. We will resolve this issue by generating a custom JAR
file for the applet, which will contain the compiled bytecode for the given model.

CONCLUSION

Bytecode inlining provides greater flexibility than a more traditional compilation process.
New primitives can still be added to the NetLogo language with the same ease as before —
bytecode inlining extracts the compiled bytecode behind the scenes. This is particularly useful
for NetLogo, which remains a rapidly evolving language. Our hybrid approach also allows some
code to remain interpreted while other code is compiled. This intermingling of interpreted and
compiled code provides the foundations for a gradual transition towards a full NetLogo compiler.
Using the techniques described in this paper, we have already experienced a significant
performance increase, and we expect future work on bytecode generation to result in further
speedups. NetLogo's turtles are faster now than ever before, and they are still picking up speed.
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ABSTRACT

We introduce a new method for processing agents in agent-based models, which
improves the efficiency of certain models and facilitates the creation of hybrid agent-
based / systems-dynamics models. Dynamic Agent Compression allows agents to shift in
and out of a compressed state based on their changing levels of heterogeneity. Sets of
homogeneous agents are stored in compact bins, making the model more efficient in its
use of memory and computational cycles. Modelers can use this increased efficiency to
speed up the execution times, to conserve memory, or to scale up the complexity or
number of agents in their models.

The advantages outweigh the overhead of Dynamic Agent Compression in models where
agents are unevenly heterogeneous: where a set of highly heterogeneous agents are
intermixed with numerous other agents that are either frequently inactive or that fall into
broad internally homogeneous categories. Sample applications include modeling the life-
cycle of extremely large populations (fish-larvae, bacteria), or modeling the diffusion of
ideas or diseases through a population. Dynamic Agent Compression is not appropriate
in models with few, exclusively complex, agents.

We describe in detail an implementation of lossless Dynamic Agent Compression, where
no model detail is discarded during the compression process. Lossless compression also
allows modelers to readily implement hybrid models where systems-dynamics
components co-exist with traditional agent-based methods. = We contrast lossless
compression to lossy compression, which promises greater efficiency gains yet may
introduce artifacts in model behavior.

Keywords: Agent Based Modeling, Scaling, Homogeneity, Compression
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INTRODUCTION

This paper introduces a new method for processing agents in agent-based models, which
improves the computational and memory efficiency of certain models and facilitates the creation
of hybrid agent-based / systems-dynamics models. Dynamic Agent Compression is born out of
the observation that in many models, agents are unevenly heterogeneous. A significant portion
of the agents may be inactive at a given time tick, or be active but fall into a few broad categories
of internally homogeneous agents. These inactive or homogeneous agents are intermixed with
highly heterogeneous agents, and both groups may change their level of heterogeneity over time.

Dynamic Agent Compression allows individual agents to move in and out of a
compressed state based on their changing levels of heterogeneity. Sets of homogeneous agents
are stored in compact bins, leading to more efficient use of computational resources. Modelers
can use this increased efficiency to reduce execution times, to conserve memory, or to scale up
the complexity or number of agents in their models.

Dynamic Agent Compression is an extension of Stage’s (Stage et al. 1993) work on
static agent compression, which he used to tackle the problem of large-scale models with
prohibitive resource requirements. His algorithm works as follows: Consider each agent as a
point in a multi-dimensional attribute space, where dimensions include location, age, health
status, etc. Find clusters of agents with similar attributes and replace them with aggregated
agents. Give the aggregated agents attributes that represent the core of the clusters and an
“expansion factor” to represent how many agents are within the cluster. Use these aggregated
agents instead of the individual agents to save computation and memory resources, either
throughout the entire model or within expensive sub-models.

In addition to Stage’s (1993) COMPRESS algorithm, a number of related methods have
been used to address the computational resource requirements of extremely large numbers of
agents. As with Stage (1993), many of the early efforts occurred in the ecology field as
researchers modeled massive numbers of trees, fish, or bacteria. The most popular method of
handling this problem is the “Super Individual” method (Scheffer et al. 1995), where a single
agent in the model represents multiple entities in the real world (such as bacteria). For example
Rose (Rose et al. 1993) employed a sampling and re-sampling algorithm to represent varying
numbers of fish larvae, juveniles, and adults in his models. Hellweger (2006) recently expanded
upon this literature with a location-specific method, which addresses distortions caused by the
scarcity of super agents in localized pockets of the model. Research into multi-scale models has
also examined the creation of aggregate agents (e.g. Servat 1998), but without the particular use
of formal compression techniques.

This paper proposes a number of innovations on Stage’s method in order to make the
procedure more flexible and efficient. Where Stage (1993) utilizes a once-off static compression
of agents,” we propose a dynamic method that adapts to agents’ changing heterogeneity during
model execution. Moreover, we describe an extensible architecture where the individual

! As a side-note, the agent-compression library described here could readily be used to support emergent multi-scale
modeling.
2 Which can be repeated for each execution of expensive sub-models, but is nonetheless an inherently static method.
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modeler needs only specify a limited set of parameters, and where multiple compression
algorithms (including Stage’s COMPRESS algorithm) can be made available. We then discuss
in detail a “lossless” implementation of Dynamic Agent Compression, where no model detail is
discarded during the compression process. Lossless compression allows modelers to readily
implement hybrid systems-dynamics / agent-based models or limit resource requirements on
existing large-scale models without biasing model behavior. We then discuss a more challenging
but potentially rewarding “lossy” variant.

METHODOLOGY

The key to Dynamic Agent Compression is that agents are compressed and decompressed
as the simulation progresses, but that the model interacts with all agents as if they were in a
traditional agent-based environment. At the start of the model, similar agents are grouped into
compact bins, while agents with particularly unique attributes are left un-grouped. During the
simulation, these bins (“Agent Containers”) dynamically compress or de-compress one or more
component agents, depending on the agents’ attributes. If non-compressed agents join an
existing group of agents in attribute space, they can also automatically join an existing Agent
Container or form a new Agent Container. When a change in a compressed agent’s attributes
causes it to become heterogeneous, it decompresses into a separately instantiated agent or joins
another Agent Container, as appropriate.

Dynamic Agent Compression can be implemented in a “lossless” or “lossy” manner. In
a “lossless” compression, only agents that are strictly identical from the perspective of model
behavior are combined into a single entity.® In a “lossy” compression, similar agents are
combined based on the degree of compression desired.* Lossless compression provides an
inexpensive way to make a model more efficient, but the efficiency gains are limited by the
degree of homogeneity in the model. As will be discussed below, there is a class of models
where this approach can be extremely valuable. Lossy compression discards limited information
about the agents in pursuit of greater efficiency. It can be applied to any agent based model, but
researchers must balance the efficiency gains against the potential for bias in model outcomes.”

Dynamic Agent Compression relies on the actions of a Compression Manager which
manages the agent and Agent Containers. The Compression Manager filters calls from the
model to create, modify, and query agents. When a set of homogeneous agents occurs, it creates
an Agent Container to represent them more efficiently, and redirects calls from the model to the

¥ Agent “metadata” that is relevant to the modeler but which otherwise does not affect model behavior need not be
homogeneous. For example, agents can have different names or unique identifiers that do not directly affect the
model. As demonstrated in the implementation below, this agent-specific metadata can be stored and used as
needed.

* For a general discussion of lossy versus lossless compression, see for example:

http://en.wikipedia.org/wiki/Lossy data compression#Lossy vs. Lossless Compression. The method discussed
here is conceptually a type of “transform codec,” where existing agent information is processed into compressible
pieces.

> Bias in model behavior would be considered a “compression artifact.” As with any lossy compression technique,
the goal is to provide modelers with the fewest artifacts for the desired level of compression. However, artifacts can
never be completely avoided, and the modeler should perform a thorough sensitivity analysis to evaluate tradeoffs.
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container. Each Agent Container holds a single agent with attributes that represent the set and a
counter for the total number of agents in the set. It passes queries from the model to the sample
agent, and monitors changes in the agent. If an agent differentiates itself from the set, the
Compression Manager extracts it from the Agent Container and makes it a unique, individual
agent. Thus, with the supervision of the Compression Manager, Agent Containers behave like
their component agents; they accept time ticks, can be visualized, can be check-pointed, and can
answer queries from data collection probes. In each circumstance, they respond like a set of
individually instantiated objects.

In general, Dynamic Agent Compression is appropriate (i.e. the increased efficiency in
agent storage outweighs the overhead of compression) in models where agents are unevenly
heterogeneous: where a set of highly heterogeneous agents are intermixed with numerous other
agents that are either frequently inactive or fall into broad internally homogeneous categories.
Sample applications include modeling the life-cycle of extremely large populations (fish-larvae,
bacteria), or modeling the spread of ideas or diseases through a population. By compressing the
sets of otherwise homogeneous agents, and handling updates to the compressed agents
appropriately, the model can save significant computational cycles and memory resources
without compromising the model’s behavior.

SAMPLE JAVA IMPLEMENTATION

Here, we describe a lossless Dynamic Agent Compression implementation in which we
applied a relatively straightforward change to an existing model to utilize our Agent
Compression library. This implementation places the Agent Compression Manager directly
between the main model class and the agents. The Agent Compression Manager is generic,® and
knows nothing about the model or agents beyond their implementation of two simple class
interfaces.” Our library has two Java classes, in addition to the two class interfaces:

e Core Agent Compression Library:

o0 AgentCompressionManager Class. The AgentCompressionManager acts as the filter
between the model and the agents, as described above. It receives calls from the
model for creating, updating (stepping), and querying of agents, and then passes the
call to the appropriate AgentContainer or Agent.

0 AgentContainer Class. The AgentContainer represents a set of CompressibleAgents
in the model, and contains a sample agent from that set. On each time tick, it calls the
sample agent, and removes it from the set if it diverges from the rest of the group.

e Interfaces required of the existing model:

¢ Dynamic Agent Compression can be implemented in a much more specific manner. In fact, we have two
implementations of the AgentCompressionManager, one which is tailored with specific knowledge about the agents,
and one which blindly creates Agent Containers from the supplied list of parameters. Here, we discuss the generic
implementation.

" Note, most of the required functions were already present in our model, and are generally common among agent
based models. Thus, it would not require much additional programming to adapt other models.
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o CompressibleAgent Interface. In order to use the library, a model’s existing agent
classes must implement the CompressibleAgent interface, which allows for simple
communication between the agent and the Agent Compression Manager.

0 CompressibleModel Interface. In order to use the library, the modeler must
implement the CompressibleModel interface, which allows for simple communication
between the Agent Compression Manager and the model. The Interface has only one
function, which allows the Manager to ask the model to instantiate an Agent (of its
own desired subclass).

The creation of agents requires the most modification. In the model, calls to the Agents’
constructors are replaced by calls to the AgentCompressionManager. AgentContainers are then
generated dynamically as individual agents are added to the model. The agent creation proceeds
as follows:

e The model tells the Agent Compression Manager that it would like to create Agents with a
given set of initial parameters. The Compression Manager examines these parameters and
either

o0 Asks the model to instantiate the Agent as it normally would (using its pre-existing
agent classes and initialization procedures). The model then gives the Agent to the
AgentCompressionManager for its records; or

o Chooses not to instantiate the Agent, since it either has a group of agents that is
sufficiently similar to the newly desired Agent to warrant the creation of an
AgentContainer or it already has a relevant AgentContainer. In the first case, the
AgentCompressionManager creates an AgentContainer to wrap the group of
individual Agents. In the second case, the AgentCompressionManager merely
increments the relevant AgentContainer.

Once Agent initialization is complete, the model continues through the rest of its startup
procedure. When the simulation begins, the flow of execution is as follows:

e At each time increment, the model calls its step() function. First, it updates its internal
information and makes any other changes to the environment.
e The model then calls AgentCompressionManager.step(), which:
o Calls step() on each unique Agent (i.e. each agent not within an AgentContainer).
o Calls step() on each AgentContainer. The AgentContainer calls step() on its internal
CompressibleAgent for each “agent’ contained in the container. The first time it
calls step(), it is a normal function call, unmodified from the Agent’s normal
procedure. The agent updates its internal information and interacts with the
environment. The subsequent calls within the same time tick are “timeless steps”,
where the Agent is asked to interact with its environment but not update its internal
information based on the passage of time.
e After each step() within AgentContainers, the AgentCompressionManager checks to see if
their CompressibleAgents have changed attributes. If so, it extracts the Agents from the
AgentContainers.
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e |t then checks the attributes of the newly-extracted Agents, to see if they can join another
existing AgentContainer, trigger the formation of new AgentContainers, or remain as an
individually instantiated Agents.

When the model needs to gather information about the agents (for data-logging or other
purposes), it similarly queries the AgentCompressionManager instead of the individual agents.
As with the step() function, the AgentCompressionManager queries the AgentContainers and the
individual agents in order to gather the required information.

Figures 1 and 2 below illustrate the program execution flow of a typical model respectively
before and after adaptation for Dynamic Agent Compression.

Modlel::Initialize() —®Model::CreateAgent()—m Agent::Constructor()

Model::Step() »  Agent::Step()

Figure 1: Program Execution Before Implementing Dynamic Agent Compression

AgentContainer::

Model::Initialize() [—— ACM:CreateAgent() —= Constructor()

¢

Model::.CreateAgent()——m Agent::Constructor()

Model::Step() — ACM:CreateAgent() ——®  Agent::Step()

Figure 2: Program Execution After Implementing Dynamic Agent Compression
(“ACM” = “Agent Compression Manager”)
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ANALYSIS
Lossless Dynamic Agent Compression and Hybrid Models

Lossless compression is related to and supports a general class of hybrid agent-based and
systems-dynamics models.  An agent-based model that uses lossless Dynamic Agent
Compression is effectively a simple hybrid model, and the architecture of agent compression
facilitates the development of more complex hybrids. In a systems dynamics model, stocks of
some homogeneous entity are placed into distinct bins, and equations govern the flow of entities
from one bin to another over time.? In a traditional agent-based model, agents are heterogeneous,
keep their own internal state, and independently make decisions about their actions.

The Compression Manager creates the framework for both representations to coexist and
feed each other in a single model.” Agent Containers function as the bins in a systems-dynamics
model. The Compression Manager can either explicitly implement equations to handle the flow
between the bins on each time tick, or it can use the self-update (i.e. step) functions within the
contained Agents for the same effect. The Compression Manager also holds the collection of
heterogeneous, individually instantiated agents, which are updated and queried normally by the
model. As described above, the Compression Manager handles the conversion of “agents”
between the systems-dynamics and agent-based settings. Finally, the model and individual
agents are unaware of the internal division between the system dynamics and agent-based
settings, and see only a single unified environment because of the intermediary Compression
Manager.

Naturally, other implementations of the systems dynamics control logic and of the overall
Dynamic Agent Compression structure are possible. This example is merely meant to serve as a
proof of concept, and potentially as a starting point for further discussion.

Lossy Compression

While we have not discussed the implementation of lossy compression in detail here, a
number of observations can be made. In terms of architecture, lossy compression is not
fundamentally different from lossless compression. Instead of requiring that compressed agents
be identical, the Compression Manager would have to implement a clustering algorithm on the
multi-dimensional attribute space. It could perform a thorough analysis at the initialization of
the model, then use simpler cluster-boundary conditions to handle the compression and
decompression of agents during the execution of the model (perhaps augmented by periodic re-

& One could consider the “agents” in a systems-dynamics model to be the stocks themselves, or the entities within
the stocks. While in reality, we implement systems-dynamics stocks as Agent Containers, it helps to understand the
relationship between the systems-dynamics and agent-based portions of the architecture if one thinks of the entities
within the stocks as agents.

° The co-existence and intercommunication of an agent-based sub-model and system-dynamics model is relatively
straightforward, and has been implemented in packages such as AnyLogic (XJ Technologies 2006). However, the
transition of agents between the two worlds, and the transparent nature of this process to the modeler is what makes
Dynamic Agent Compression unique.
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analysis). The Compression Manager can utilize existing clustering algorithms on the agent-
parameter space (e.g. Stage et al. 1993), or implement new techniques.

While the architecture is straightforward, the benefits of lossy compression are much less
clear. On the one hand, clustering algorithms would allow for a more efficient representation of
the agents. On the other hand, clustering would require more overhead and would obviously
affect model behavior. Much of the burden for addressing this problem rests with the generic
clustering algorithm. A good clustering algorithm will maximize variation between clusters and
minimize variation within clusters, thus sacrificing fewer agent details. However, generic
clustering algorithms cannot guarantee that the details they discard are unimportant to the model.
The more information the modeler can supply to the clustering algorithm, the better. At a basic
level, the modeler can limit model distortion by decreasing the compression level, by flagging
selected variables as “never compressible,” or by choosing lossless compression. At a more
advanced level, the modeler can customize the compression algorithm using detailed knowledge
of the situation.

While there may not be a way to completely eliminate the impact of lossy Dynamic
Agent Compression on model behavior, there are methods to quantify and evaluate its effects.
As with ordinary model parameters, those for Dynamic Agent Compression should be evaluated
through a rigorous sensitivity analysis.'® For example, in a Computational Laboratory setting
(Dibble 2006), researchers could evaluate the effects of changing the level of compression or of
excluding particular agent attributes from the compression process. This supports informed
choices for the use and calibration of Dynamic Agent Compression.

Nonetheless, it is important to put the consequences of lossy Dynamic Agent
Compression in context. When lossy Agent Compression is not used (and lossless compression
is not feasible), modelers of large-scale agent based systems are often forced to manage their
resource requirements by decreasing the total number of simulations used in their study,
decreasing the number of agents in their model, or defaulting to common “super agent”
approaches (Rose 1993). When researchers compensate for slower speeds by running fewer
simulations in order to present timely results, they sacrifice thorough and rigorous exploration of
the model’s behavior. Similarly, limiting the number of agents purely in response to limitations
of time or computational resources risks naively running the model with too few agents to elicit
key effects. Alternatively, the use of super agent abstractions implicitly imposes static agent
compression without providing opportunities to evaluate associated tradeoffs. Dynamic Agent
Compression and Computational Laboratories support fully informed evaluation of tradeoffs.

Overuse of Scaling Techniques

A less obvious pitfall of Dynamic Agent Compression is that it can provide a tempting
solution where none is needed and may actually be detrimental.  Many modelers naively
presume that models require a strict one-to-one relationship between the number of agents in
their model and the number of entities in the domain of study. In reality, many models do not

19 Following similar robustness analyses that modelers already apply to input parameters, a la Steven Bankes’s use
of a Latin Hyber-cube to sample and analyze parameters (see www.evolvinglogic.com/el_news.html for examples).
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require a one-to-one relationship because their behavior stabilizes after a certain number of
agents are added to the population, beyond which the fundamental characteristics of system’s
behavior remain fundamentally unchanged (or scale in an easily predictable manner) as the
number of agents increases further. Using Dynamic Agent Compression to unnecessarily scale
a model up to a one-to-one relationship wastes programming effort, computational resources, and
analysis time.

But how is a modeler to know that the system stabilizes at a certain threshold of agents
such that one-to-one scaling is unnecessary? In some cases, this can be determined analytically.
Yet in other situations the only way to evaluate model sensitivity with respect to the number of
agents is to take the model up to the full “ideal” number of agents in order to determine the
models’ threshold of stability (if any). The modeler can use a simple implementation of
Dynamic Agent Compression in order to test the model’s behavior with larger numbers of agents.
If it turns out the model requires the increased number of agents, then the modeler can customize
the Dynamic Agent Compression tool to improve its efficiency. If large numbers of agents are
not necessary, then the generic Dynamic Agent Compression tool has answered a valuable
question, and saved resources for all future simulations.

CONCLUSION

Dynamic Agent Compression can help agent-based modelers decrease the memory and
computational resources required for certain models. While this approach is ideally suited for
improving the efficiency and scalability of models in which a large number of homogeneous
agents co-exist with a smaller number of unique agents, several complementary advantages arise.
For example, Dynamic Agent Compression facilitates the creation of hybrid models with
systems-dynamics and traditional agent-based components, and thus provides modelers with
improved flexibility for model designs. We have also noted that a solid understanding of the
operation of a model is advisable before exhaustively working to scale up to very large numbers
of agents. Dynamic Agent Compression can help to evaluate the importance of such scaling.

Nonetheless, the discussion provided here is simply a beginning. Extensions could
include a comprehensive analysis of the relative efficiency and tradeoffs of Dynamic Agent
Compression versus alternative methods. We have briefly discussed the implications of lossy
compression, but significant further research is needed before pursuing this perilous yet
potentially rewarding path. Finally, the use of Dynamic Agent Compression in emergent multi-
scale modeling seems especially promising.
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POLYAGENTS MODEL MULTIPLE FUTURES CONCURRENTLY

H.V. PARUNAK, NewVectors LLC, Ann Arbor, Ml
S. BRUECKNER, NewVectors LLC, Ann Arbor, Ml

ABSTRACT

Modeling domain entities with agents reveals many aspects of system dynamics and
interactions that other modeling techniques do not. However, an agent executes only one
trajectory per run, and so does not capture the alternative trajectories accessible in the
evolution of any realistic system. Averaging over multiple runs does not show the range
of individual interactions. We address these problems with a new modeling construct, the
polyagent, which represents each entity with a single persistent avatar supported by a
swarm of transient ghosts. Each ghost interacts with the ghosts of other avatars through
digital pheromone fields, capturing a wide range of alternative trajectories in a single run
of the system that can proceed faster than real time.

Keywords: Multiple futures, uncertainty, BDI, swarm intelligence, digital
pheromones, dynamics.

INTRODUCTION

The fundamental entity in an agent-based model is the agent, corresponding to a discrete
entity in the domain being modeled, and the fundamental operator is the interaction among agent
behaviors. The fundamental entity in an equation-based model (Sterman 2000) is some system
observable, and the fundamental operator is the evolution of that observable (e.g., by a
differential equation).

Agent-based models often map more naturally to the structure of a problem than
equation-based models, have more natural representations, and provide more realistic results
(Parunak, Savit et al. 1998), but suffer an important shortcoming. The observables in an
equation-based model are often averages across agents, so the model captures agent variation
(although at an aggregate level). Each agent in an agent-based model executes only one
trajectory per run of the system, and so does not capture the alternative trajectories accessible to
its entity in the evolution of any realistic system. Good modeling practice requires averaging
over multiple runs, but this approach still does not capture the range of individual interactions.

The polyagent modeling construct represents each entity with a single persistent avatar
supported by a swarm of transient ghosts. Each ghost interacts with those of other avatars
through digital pheromone fields, capturing many alternative trajectories in a single run. We
have used this approach in several systems. This paper articulates the polyagent as a modeling
construct and provides some guidance concerning its use.

* Corresponding author address: H. Van Dyke Parunak, NewVectors LLC, 3520 Green Court, Suite 250,
Ann Arbor, Ml 48105; e-mail: van.parunak@newvectors.net.
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THE CHALLENGE OF MODELING MULTI-AGENT INTERACTIONS

Consider n + 1 entities. At each step, each entity interacts with one of the others. Thus at
time t its interaction history h(t) is a string in n'. Its behavior is a function of h(t). This toy model
generalizes many domains, including predator-prey systems, combat, innovation, diffusion of
ideas, and disease propagation.

One simulation of such a system gives limited information.

1. We may have imperfect knowledge of the agents’ internal states or the environment.
If we change our assumptions about these unknown details, the agents’ behaviors are
likely to change.

2. The agents may behave non-deterministically: their perceptions may contain noise,
and their decisions may be stochastic.

3. Even if the agents’ reasoning and interactions were deterministic and we had accurate
knowledge of all state variables, nonlinearities can result in chaotic dynamics: tiny
differences in state variables can lead to arbitrarily large behavioral divergences.

An equation-based model typically tracks aggregate or average observables across the
population (e.g., for predators and prey, predator population, prey population, average predator
energy level, or average prey energy level) as functions of time, and does not model the
trajectory of a single entity.

An agent-based model explicitly generates each agent’s trajectory. In our model, over t
steps, each entity experiences one of n’ possible histories. The population of n + 1 entities
samples only n + 1 of these histories.

Such models must be run many times to explore the possible outcomes. Each run samples
only one set of possible interactions. For large populations and scenarios that support alternative
interactions, the number of runs needed to sample the possible interactions thoroughly is
prohibitive, and the fraction of possible histories actually sampled by a single run is vanishingly
small. Polyagents can capture the outcome of multiple possible interactions in a single run.

TOWARD A THEORY OF POLYAGENTS

What is a polyagent, and how is it related to previous work?

Understanding a Polyagent

A polyagent represents each entity with multiple agents: a single avatar that links it to the
entity, and a swarm of ghosts that explore its alternative behaviors.

The avatar persists as long as its entity is active, and maintains its entity’s state. It may
use sophisticated reasoning. Each avatar generates a stream of ghosts. Ghosts die after a fixed
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period of time or after some defined event. Each avatar controls the rate it generates ghosts, and
typically has several concurrent ghosts.

Ghosts explore alternative behaviors for their avatar. They are computationally simple,
and interact through a digital pheromone field, a vector of scalars that depends on both location
and time. Each ghost chooses its actions stochastically based on a weighted function of nearby
pheromones, and optionally deposits its own pheromone. A ghost’s “program” is the vector of
weights.

Ghosts multiply the number of interactions that a single run of the system can explore.
Instead of one trajectory for each avatar, we now have one trajectory for each ghost. If each
avatar has k concurrent ghosts, we explore k trajectories concurrently. Pheromone dynamics in
the environment make the multiplication even greater (Brueckner 2000):

1. The environment aggregates deposits from individual agents, fusing information
across multiple agents, enabling a single ghost to interact with multiple other ghosts
at the same time.

2. It evaporates pheromones, a form of truth maintenance. Traditional knowledge bases
remember everything they learn unless they have a reason to forget. Detecting
resulting inconsistencies is NP-complete. Pheromones forget what they learn, unless
it is reinforced, so inconsistencies purge themselves.

3. It propagates pheromones, disseminating information to nearby agents.

If n avatars deposit pheromones, each ghost’s actions are influenced by up to n other
agents (depending on the propagation radius), so we are exploring in effect nk interactions for
each entity, or n’k interactions overall. If individual ghosts deposit pheromones, the number of
interactions explored is even greater, on the order of k". The detail of interactions is not as great
as in a conventional multi-agent model. But experience shows that the fidelity is adequate for the
problems we have addressed, and pheromone-based interaction is computationally efficient.

The avatar can

e modulate the number of its ghosts, their rate of generation, and the distribution of
their parameters to control the exploration of alternative futures;

e evolve them to learn the best parameters for a given situation;

e review their behavior to estimate its own future experience.

Comparison with Previous Work (Table 1)

Traditionally, distinct agents model different functions of a single domain entity. In a
polyagent, all ghosts have the same function: to explore one possible behavior of the domain
entity. Multiple ghosts provide, not functional decomposition, but a range of estimates of
alternative behaviors.
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TABLE 1 Comparing the polyagent with other technologies
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Fictitious play X X
Ant colony optimization X X X

Kijima’s polyagents
Polyagent therapies

Many forms of evolutionary computation (Jacob 2001) execute multiple representatives
of an entity concurrently. Each agent samples only one series of interactions with other entities in
the domain. The polyagents’ pheromone field permits each ghost to adjust its behavior based on
multiple alternative behaviors of other entities.

The multiple behaviors contemplated in fictitious play (Lambert, Epelman et al. 2005)
take place against a static model of the rest of the world.

Ant-colony optimization (Dorigo and Stuetzle 2004) uses pheromones to integrate the
experiences of parallel searchers. The polyagent’s innovation is an avatar that manages the
searchers representing a single domain entity.

The term *polyagent” expresses this novel construct of several software agents
collectively representing a domain entity and its alternative behaviors. The term is used in two
other contexts. In medicine, “polyagent therapy” uses multiple treatment agents (notably,
multiple drugs in chemotherapy). Closer to our domain, but still distinct, is the use of the term
(Kijima 2001) to describe a game-theoretic approach to analyzing the social and organizational
interactions of multiple decision-makers. Kijima’s “poly-agent” makes sense only as a
description of a system, and does not describe a single modeling construct, as does our term.

EXAMPLES OF POLYAGENTS

Polyagents are a rationalization of techniques we have used in several applications.

Factory Scheduling

Our earliest application of polyagents did real-time job-shop scheduling (Brueckner
2000) with three species of agents: processing resources, parts, and policy agents. Avatars of
processing resources with different capabilities and capacities and avatars of parts with changing
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processing needs (due to rework) coordinate to optimize material flow through a complex, high-
volume manufacturing transport system. Only part avatars deploy ghosts. Policy agents and
resource (machine) avatars are traditional single agents.

In a job shop, parts interact by occupying resources, blocking access by other parts.
Depending on the schedule, different parts may interact, and in different orders. Polyagents
explore the space of alternative part routings and alternative interactions concurrently in a single
model.

Part avatars continuously deploy ghosts that move through successive decision points in
the manufacturing process. Each decision is stochastic, based on attractive pheromones around
the next decision point. Policy agents deposit these pheromones to balance the material flow
across the transport network, then ghosts modulate them.

The ghosts that avatars emit travel into the future without the delay imposed by physical
part transport and processing. These ghosts may remain within the part’s current context, or they
may emulate the probabilistic outcome of a processing step and assume a new state for their part.
In either case, the ghosts contribute to a pheromone field that reports the currently predicted load
of parts across material handling stations. When ghosts for alternative parts explore the same
resource, they interact through their pheromones.

Each ghost’s stochastic decisions generate an alternative routing for its avatar. The
pheromone field to which it responds has been modulated by the ghosts of other parts, and
represents multiple routings of those parts. Thus each part’s ghosts explore both alternative
futures for that part, and alternative interactions with other parts.

Policy agents are informed either by humans or by other agents of the desired load of
parts of specific states at a particular location. They deposit attractive or repulsive pheromones.
Thus, through a local process, multiple policy agents supported by the flow of ghosts adapt the
levels of attractive or repulsive pheromone deposits to shape the future flow of material.

By the time the avatar, delayed by physical movement constraints, makes its next routing
choice, the ghosts and policy agents have adjusted the pheromone concentrations so that the
avatar makes the “right” decision. The policy agents and the ghosts control the behavior of the
avatar by converging on a low-entropy pheromone concentration that the avatar can sample.

Path Planning for Robotic Vehicles

Robotic vehicles must continuously replan their paths, as their knowledge of the
environment changes due to limited sensor range and environmental change. In military
applications, vehicles must navigate dynamically changing sets of targets and threats.

Ants solve a similar problem in forming paths between nests and food sources (Parunak
1997). Ants searching for food deposit nest pheromone while climbing the food pheromone
gradient left by successful foragers. Ants who find food deposit food pheromone while climbing
the nest pheromone gradient left by outbound ants. The pheromone fields collapse into a path as
the ants interact.
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This algorithm depends on many ants exploring different paths, while a vehicle only
traverses its path once. So we use a polyagent to represent the vehicle (Sauter, Matthews et al.
2005). As the avatar moves, it continuously emits ghosts, whose interactions continuously
(re)form the path in front of the avatar. These ghosts seek targets and then return to the avatar,
responding to several digital pheromones:

RTarget is emitted by a target.
GNest is emitted by a ghost that has left the avatar and is seeking a target.
GTarget is emitted by a ghost that has encountered a target and is returning to the
avatar.
e RThreat is emitted by a threat.

In general, the ghosts are attracted to RTarget pheromone and repelled from RThreat
pheromone. While they have not found a target, they are attracted to GTarget pheromone. Once
they have found a target, they are attracted to GNest pheromone. A ghost senses the relative
strengths of these quantities in its current cell and each neighboring cell in a hexagonal lattice,
weights them to compute a value for each cell, then selects its next cell with probability
proportional to its value.

Each ghost explores one possible route. The avatar performs two functions.

1. It integrates the information from ghosts into a single route for the robot. GTarget
pheromone is deposited only by ghosts that have found the target, and its strength
shows how many ghosts that traversed that cell on their way home from the target. So
the aggregate pheromone strength estimates the likelihood that a cell is on a
reasonable path to the target.

2. It modulates ghost behavior by adjusting the weights that ghosts use to combine
pheromones. In our initial implementation, all ghosts used the same weights, and their
paths differed only because they chose successive steps stochastically. When the
avatar randomly varied the weights around the hand-tuned values, performance
improved by over 50%, because the ghosts could explore more routes. Then the
avatar evolved the vector of weights during system operation, and performance
improved nearly an order of magnitude over hand-tuned ghosts (Sauter, Matthews et
al. 2002).

We tested this system’s ability to route an aircraft

in simulated combat (Parunak, Brueckner et al. 2004).

In one example, it found a path to a target through
a threat gauntlet (Figure 1). A centralized planner that
integrated a loss function and climbed the gradient could
not solve this problem without introducing an
intermediate goal at the gauntlet’s entrance. The
polyagent succeeded because some ghosts wandered into
the gauntlet, laying pheromones to guide other ghosts.

In another experiment, we compared the total
surviving strength of the Red and Blue forces in missions
over a changing landscape of threats and targets, in two

FIGURE 1 Gauntlet routing
problem
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different configurations. The polyagent’s ability to deal with partial but up-to-date knowledge
both inflicted more damage on the adversary and offered higher survivability than an avatar
guided by preplanned scripts based on complete initial information.

This application shows how a polyagent can explore alternative behaviors concurrently,
and integrate that experience into a single course of action. Since only one polyagent was active
at a time, this work does not use polyagents’ ability to manage the exploding space of possible
interactions.

Characterizing and Predicting Agent Behavior

We use polyagents to evolve a model of each real-world entity (a group of soldiers
known as a fire team) in urban combat (Kott 2004) and predict its future behavior. Figure 2
shows the process. Ghosts live on a timeline of discrete pages indexed by t (distinct from real
time t) that begins in the past and runs into the future. The avatar inserts ghosts at the insertion
horizon (say t - t = -30, the state of the world 30 minutes ago), sampling each ghost’s parameters
to explore alternative personalities of its entity. The avatar also estimates its entity’s goals (using
a belief network) and instantiates them as pheromone sources that attract the ghosts.

The avatars record pheromones representing the observed state of the world on each page
between the insertion horizon and t = t. The inserted ghosts interact with this past state. Their
fitness depends not just on their own actions, but also on the behaviors of the rest of the
population, which is also evolving. T advances faster than real time, so eventually t = t, when the
avatar compares each ghost with its entity’s actual state.

The fittest ghosts have three functions.

1. Their personality estimates the personality of the corresponding entity.

2. They breed, and their offspring reenter at the insertion horizon.

3. They run into the future, exploring possible futures of the battle that the avatar

analyzes to predict enemy behavior and recommend friendly behavior. In the future,
the pheromone field is

generated by other ghosts
rather than avatars. Thus it
integrates  the  various
futures that the system is
considering, and each
ghost interacts with this
composite view of other

entities. |
N | _ :
. . . ~ ~ Ghost time t
The first and third functions Insertion Horizon = Prediction Horizon
are analogous to the integrating Measure Ghost fitness £ Observe Ghost prediction
function of the avatars in the route W

planning problem, while the second is

analogous to the modulation function. FIGURE 2 Behavioral emulation and extrapolation
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This system has successfully characterized the internal state of entities that we can only
observe externally, and predicted their future behavior, in experimental wargames with human
participants (Parunak, Brueckner et al. 2006). We can detect entities’ emotions as well as a
human observer, but faster. Our prediction of the future is also superior to a human’s.

DISCUSSION
Several features of the polyagent modeling construct deserve recognition.
e Multiple ghosts concurrently explore alternative behaviors of the domain entity.

e The ghosts interact through a digital pheromone field that combines multiple possible
interactions among the entities.

e Asingle, possibly more complex, avatar modulates the swarm of ghosts.

e The avatar also integrates the behaviors of its ghosts (either directly or by observing
the pheromones they deposit) to estimate the domain entity’s likely behavior.

The strength of a pheromone field depends (inter alia) on the frequency with which
agents of a given type visit various locations. If those agents are ghosts representing an entity’s
alternative futures, the field may be interpreted in terms of the likelihood of different future
states. An analogous situation arises in quantum mechanics (Feynman and Hibbs 1965). Table 2
suggests several parallels between polyagents and quantum physics. In the spirit of our earlier
work applying metaphors from theoretical physics to understanding multi-agent systems
(Parunak, Brueckner et al. 2004), we are exploring how quantum mechanics may provide useful
metaphors for engineering polyagent systems and interpreting their behavior.
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TABLE 2 Parallels between quantum physics and polyagents

Quantum Physics

Polyagents

Duality between (single, localized) particle and
(distributed) wave function

Interactions among wave functions” amplitude
fields model interactions among particles

Wave function captures a range of possible
behaviors

Observation collapses the wave function to a single
behavior

Duality between (single, localized) avatar and
(distributed) swarm of ghosts

Ghosts’ pheromone fields model interactions of
agents

Swarm of ghosts captures a range of possible
behaviors

Avatar interprets the aggregate behavior of the
ghosts and yields a single prediction of behavior
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WHO'S YOUR NEIGHBOR?
NEIGHBOR IDENTIFICATION FOR AGENT-BASED MODELING
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ABSTRACT

Agent-based modeling and simulation, based on the cellular automata paradigm, is an
approach to modeling complex systems comprised of interacting autonomous agents.
Open questions in agent-based simulation focus on scale-up issues encountered in
simulating large numbers of agents. Specifically, how many agents can be included in a
workable agent-based simulation? One of the basic tenets of agent-based modeling and
simulation is that agents only interact and exchange locally available information with
other agents located in their immediate proximity or neighborhood of the space in which
the agents are situated. Generally, an agent’s set of neighbors changes rapidly as a
simulation proceeds through time and as the agents move through space. Depending on
the topology defined for agent interactions, proximity may be defined by spatial distance
for continuous space, adjacency for grid cells (as in cellular automata), or by connectivity
in social networks. Identifying an agent’s neighbors is a particularly time-consuming
computational task and can dominate the computational effort in a simulation. Two
challenges in agent simulation are (1) efficiently representing an agent’s neighborhood
and the neighbors in it and (2) efficiently identifying an agent’s neighbors at any time in
the simulation. These problems are addressed differently for different agent interaction
topologies. While efficient approaches have been identified for agent neighborhood
representation and neighbor identification for agents on a lattice with general
neighborhood configurations, other techniques must be used when agents are able to
move freely in space. Techniques for the analysis and representation of spatial data are
applicable to the agent neighbor identification problem. This paper extends agent
neighborhood simulation techniques from the lattice topology to continuous space,
specifically R Algorithms based on hierarchical (quad trees) or non-hierarchical data
structures (grid cells) are theoretically efficient. We explore implementing hierarchical
and non-hierarchical data structures by using efficient implementations that are designed
to address spatial data specifically in the context of agent-based simulation. The
algorithms are evaluated and compared according to computation times for neighborhood
creation, neighbor identification, and agent updating.

Keywords: Agent-based model, neighbor identification, proximity detection, spatial data
structure, quad tree, computational complexity
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INTRODUCTION

Agent-based modeling and simulation (ABMS), based on the cellular automata paradigm,
is an approach to modeling complex systems comprised of interacting autonomous agents (Macal
and North 2005). Agent behaviors are modeled explicitly, using a range of behavioral models
and representation schemes at appropriate levels of detail. ABMS promises to have far-reaching
effects on the way that researchers use electronic laboratories to do their research and businesses
use computers to support decision-making. Computational advances make possible a growing
number of agent-based applications across many fields. Applications range from modeling agent
behavior in the stock market and supply chains to predicting the spread of epidemics and the
threat of bio-warfare; from modeling the growth and decline of ancient civilizations to modeling
the complexities of the human immune system, and many more.

Open questions for agent-based simulation focus on scale-up issues encountered in
simulating large numbers of agents. Specifically, how many agents can be included in a
workable agent-based simulation? One of the basic tenets of agent-based modeling and
simulation is that agents interact and exchange locally available information with other agents
located only in their immediate proximity or neighborhood of the space in which the agents are
situated. Generally, an agent’s set of neighbors changes rapidly as a simulation proceeds through
time and as agents move through space. Depending on the topology defined for agent
interactions, proximity may be defined by spatial distance for continuous space, adjacency for
grid cells (as in cellular automata), or by connectivity in social networks. Identifying an agent’s
neighbors is a particularly time-consuming computational task and can dominate the
computational effort in a simulation. Two challenges in agent simulation are (1) efficiently
representing an agent’s neighborhood and the neighbors in it and (2) efficiently identifying an
agent’s neighbors at any time in the simulation. These problems are addressed differently for
different agent interaction topologies. Efficient approaches have been developed for agent
neighborhood representation and neighbor identification for agents on a lattice with general
neighborhood configurations. Other techniques must be used when agents are able to move
freely in space.

This paper extends agent neighborhood simulation techniques from the lattice topology to
continuous space, specifically R%. We explore implementing hierarchical and non-hierarchical
data structures using efficient implementations that are designed to address spatial data
specifically in the context of agent-based simulation. We also evaluate and compare the
algorithms.

This paper is organized as follows. Section 2 frames the agent neighbor identification
problem and reviews related work. Section 3 describes the experimental design for comparing
the algorithms. Section 4 presents the study results and compares performance of the algorithms.
Section 5 summarizes the findings and draws conclusions on the implications for agent-based
modeling.

STATEMENT OF THE PROBLEM

The agent neighbor problem is one of determining for each agent a, the set of agent
neighbors N, of a such that for any neighbor n &€ Na, || loc(a) — loc(n) || < da, where loc(x) is the
location of x and d, is the maximum distance between a and n defining a neighborhood under
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some selected norm. In general, the neighborhood size defined by the radius measure d, varies
by agent. Agent a may or may not be an element of N, but this depends on the use of the
neighborhood in the agent simulation. For example, in a social influence model, agents are
influenced by their neighbors, and therefore an agent’s neighborhood does not include itself.
Alternatively, in a model in which each agent considers the mass of agents in its neighborhood
and its influence on the larger system, an agent’s neighborhood would include itself. Generally,
neighbor proximity algorithms return neighborhoods that include the agent itself, and it adds
computational effort to exclude the agent if this is necessary. In what follows, we will assume
that an agent’s neighborhood includes itself. Some observations about neighborhoods that hold
true throughout the course of a simulation are that:

1 <Ya|Na| <N? where | S| is the cardinality of set S
YalNa| — N?as dy —
Ya|Na|] > 1lasda—€>0

The general strategy for identifying an agent’s neighbors is to first select a subset of
agents as candidate neighbors for evaluation in such a way that the subset includes the agent’s
actual neighbors and then to evaluate the candidates on the proximity criteria.

The agent neighborhood problem is part of a larger problem of updating an agent’s
attributes based on the attributes of its neighbors. For example, in the Boids model (Reynolds
1987, 2006), an agent’s velocity is based on the velocities of the agent’s neighbors, which
excludes the velocity of the agent itself. The general steps of updating agents’ based on their
neighbors at any point in a simulation can be broken down into neighborhood creation, neighbor
identification, and agent updating:

1. Neighborhood Creation: Create a neighborhood data structure for all agents.
2. Neighbor Identification:
2.1 For each agent, select candidate neighbors.
2.2 For each agent, evaluate whether the candidates are in the agent’s neighborhood.

3. Agent Updating: For each agent, update the agent according to who are its
neighbors.

The computational complexity (Aho et al. 1976; Knuth 1998) for neighborhood creation and
neighbor identification can vary significantly depending on the algorithm employed. In addition,
these two steps may be overshadowed by the time spent in the agent updating step.

In this study, we use an objective measure to compare the neighbor identification
algorithms in terms of computational complexity. In general, computation times vary by the
implementation method (agent toolkit or other). Our objective measure is the same for whatever
implementation is used. The measure is the number of agents that are identified as candidate
neighbors as compared to the number agents identified that are actual neighbors.
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Related Work

The problem of agent neighbor identification is similar to problems in other domains,
including:

* Collision detection in computer simulation and visualization (Basch et
al. 1997),

» Finding the nearest object or k-nearest neighbors to a query object in a spatial
database (Knuth, 1998; Hjaltason and Samet 1995),

* Find the closest pair of objects in a database (Cormen et al. 2001),

* Finding a clear path through an obstacle field in robotic planning (Lewis et
al. 1997),

*  Mobile communications (Amir et al. 2004; Kiipper and Treu 2006), and

* Aircraft proximity detection in a controlled terminal airspace (Wieland et
al. 2001).

Techniques for the analysis and representation of spatial data are applicable to these problems
(Samet 1990) and the algorithms implemented here are derived from spatial data representation.

Requirements for operating on spatial data objects vary across applications. For example, in
general database applications, standard operations include data structure creation, object
insertion, object deletion, and spatial relationship querying. The latter includes finding the
objects closest to a specified query object, such as finding the city closest to a point; finding the
nearest object or specified number of objects to a query object; and compound queries that
include combinations of attributes, such as finding the closest city with a specified population
closest to another city.

The agent neighbor identification problem has some unique characteristics, including:

1. Agents are mobile and dynamic in their locations. All agents need to
determine all their neighborhoods and neighbors each time the information is
required. This means the complete data structure must be created each time it
is used.

2. All agents are stored in memory, so there is not a high penalty for accessing a
database like there would be in a spatial database application.

In agent neighborhood determination, the requirements are somewhat different from other
applications. Although the various data structure algorithms are applicable to the agent neighbor
problem, the criteria against which they are evaluated are different.
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EXPERIMENTAL DESIGN

A naive implementation of a neighbor identification algorlthm consists of enumeratmg all
agents as nerghbor candidates for each agent resulting in N* comparisons, an O(N?) algorithm.
Such an O(N?) algorithm can be computationally expensive when N becomes large. We
implement two algorithms for neighbor identification: the grid cell method and the quad tree
approach. These algorithms are based on hierarchical data structures (quad tree) or non-
hierarchical data structures (grid cells or buckets). They are theoretically more efficient,
performing much better than an O(N?) algorlthm We also implement a variation of the all-
neighbors approach as a basis for comparison to the two algorithms tested. All of the algorithms
examined here are inclusive in the sense that they all identify sets of candidate neighbors and
these include the actual neighbors. No actual neighbors are missed.

Algorithm 1: All Neighbors Algorithm

Due to the symmetry feature of the neighbor identification problem, i.e., agent a is a
nelghbor of agent b if and only if agent b is a neighbor of agent a, the number of agent
comparisons can be reduced to (N-1) + (N-2) + ... + 1 = N (N+1)/2. This still leaves an O(N?)
algorithm. In what follows, we call this procedure the all-neighbors algorithm and use it as a
baseline for comparison.

Algorithm 2: Grid Cell Algorithm

The grid cell method proceeds by assigning a grid cell of a specified size to each agent,
collecting the agents in each grid cell, and then identifying candidate neighbors for each agent
based on the agent’s grid cell and neighboring grid cells. The entire space represented consists
only of the space spanned by the agents. Cells that do not contain at least one agent are not
represented. These latter two features of the algorithm suggest that it may be an efficient way to
identify neighbors. Figure 1 shows the grid cell indexing and candidate neighbor determination
for an agent located in the southeast quadrant of a grid cell.

In the grid cell scheme tested here, grid cells do not overlap. Therefore, the algorithm
does not have to check that a candidate agent appears multiple times in a list of candidate
neighbors. Other specialized grid cell schemes do allow overlap of grid cells (Samet 1990). The
grid cell method is easily extended to higher dimensions with the extension of grid cell indexing.
In this grid cell implementation, the neighborhood size is the same for all agents for a single
simulated time step. Neighborhood size could be varied by time step. Theoretically, the
algorithm could be extended for the case in which neighborhood size varied by agent type, but
with greater complication. For example, in a predator-prey model, the predators may detect prey
in a different range than prey are able to detect predators. In this case, modelers would need to
create two complete grid cell data structures, one whose grid cells reflect the predator
neighborhood size and one whose grid cells reflect the prey neighborhood size.
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FIGURE 1 Grid cell indexing and candidate neighbor
determination for agent located in southeast quadrant
(r = agent neighborhood radius)

Algorithm 3: Quad Tree Algorithm

Quad trees came to prominence as a way to deal with range queries in database search
(Finkel and Bentley 1974). Each node of a quad tree represents a rectangular area in two-
dimensional space and contains one of the objects located in that area. There are four subtrees
corresponding to the four quadrants of the original rectangle relative to the coordinates of the
object. The subtrees are ordered, for example, NE (quadrant I in R?), NW (quadrant I in R?), SW
(quadrant III in R?), and SE (quadrant IV in R?). In the quad tree representation, areas are
overlapping, as the space is partitioned into four symmetric patches at each ensuing level of the
hierarchy. Quad trees are also commonly used to represent spatial images as two-dimensional
arrays in which the objects are pixilated patches of the same color. Traditionally, the quad tree
representation is designed to minimize the search time to find an object in a given tree, and there
is less regard for the time to create the tree since objects in spatial or image databases are static.
In agent simulation, the quad tree must be created at each time step; therefore, there is a
recurring penalty for data structure creation when used in agent neighbor identification.

Quad trees have numerous variants, including point quad trees, region quad trees, and k-d
trees. The point quad tree is implemented here. An example of a quad tree (radial representation)
for the agent neighbor problem is shown in Figure 2 and based on simulations conducted here.
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FIGURE 2 Radial quad tree representation of agent neighborhoods
for 10,240 agents Note: Maximum tree depth is 19 and maximum
width is 1749

An important consideration is whether a quad tree is balanced, as the tree depth is the governing
factor in the time required to use the quad tree to find an agent’s neighbors. The tree structure is
dependent on the order in which the agents populate the tree. The tree in Figure 2 is based on the
random insertion of agents into the tree and is fairly well balanced.

In a quad tree implementation, the neighborhood size need not be the same for all agents
in a single time step, unlike the grid cell method described above. The algorithm allows for
neighborhood size to be an attribute of each agent.

Implementation

All tests comparing the algorithms were done using Mathematica and the agent models in
the Boids model. Mathematica is a viable platform for agent-based simulation (Gaylord and
D’ Andria, 1998) and is especially useful for prototype model development (Macal 2004; Macal
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and Howe 2005). Mathematica is a computational mathematics system with a large set of
libraries for supporting data structures and algorithms (Maeder 2000). It is highly optimized for
algorithmic and numerical processing performance.

RESULTS

Figure 3 illustrates the dimensions of the agent neighbor problem and is presented for
comparison purposes. In Figure 3, the number of operations for neighbor comparisons is
illustrated and compared to Order N* and N Log N statistics. Figure 3 shows the neighbor
comparisons for the All Neighbors algorithm is slightly better than N* but is still O(N?). Also,
Figure 3 illustrates that the total number of actual agent neighbors grows at a rate between N Log
N and N? for a problem of fixed neighborhood size, relative to the total area spanned by the
agents at a given time in the simulation and agent density, as measured by the number of agent
neighbors per agent.
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FIGURE 3 Order of neighbor comparisons
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Figure 4 illustrates the main results of the study and shows that over the full range of the
number of agents simulated (10 to 10,000), the Grid Cell (GC) algorithm results in the least
number of agent comparisons relative to the actual numbers of agent neighbors. Although the
Quad Tree (QT) algorithm performance was close to the GC algorithm, especially as the number
of agents increased, the GC algorithm resulted in superior performance for all cases. The All
Neighbors (AN) algorithm performed the least well, as expected, for it identifies all agents as
candidate neighbors, and there are many more candidate neighbors that do not turn out to be
actual neighbors, as one would expect. The theoretical minimum ratio of candidate to actual
neighbors is 1, meaning that no more candidates are identified than are actual neighbors, and no
computational effort is wasted. Both the GC and QT algorithms appear to approach this
theoretical limit at the upper range for the number of agents investigated.

CONCLUSIONS

The problem of identifying agent neighbors is a key challenge in agent simulation. This
study investigates two algorithms for identifying agent neighbors in R? using grid cells and quad
trees, and compares the results to the all-neighbors algorithm. The methods trade off increasing
implementation complexity against improved theoretical efficiency at finding agent neighbors.
Our results indicate that, over the limited range of examples tested, the grid cell and quad tree
algorithms perform well at identifying agent neighbors without identifying an excessive number
of non-neighbor candidates. The grid cell algorithm performs somewhat better in all cases than
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the quad tree algorithm. Additional study into such matters as the computational times for
creating the neighbor data structures and identifying agent neighbors should be considered in
further research. Further refinements in the algorithms tested here, especially variants of the quad
tree algorithm, may yield additional performance improvements. Finally, identifying agent
neighbors is especially problematic for distributed agent simulation in which agents must
communicate across networks of processors to identify neighboring agents and update
themselves based on their neighbors. Further research is warranted in these areas.
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MACHINE LEARNING MEETS AGENT-BASED MODELING:
WHEN NOT TO GO TO A BAR

W. RAND,* Northwestern University, Evanston, IL

ABSTRACT

One of the promises of ABM is the ability to have adaptive agents make decisions in
changing environments. Though great work has been done using adaptive agents in
ABM, more research into the theoretical understanding of these systems would be useful.
Adaptive agents have already been studied within machine learning (ML) — an area of
artificial intelligence specifically concerned with adaptation and building internal models.
The first part of this paper presents a framework for understanding ML as a component of
ABM, and describes how different ML techniques can be incorporated into some ABMs.
At the high level this framework consists of two cycles that involve evaluating input,
making decisions and then generating output. Within this generalized framework, the ML
algorithm is using the ABM as an environment and a reward generator, while the ABM is
using the ML algorithm to refine the internal models of the agents. There are many
details that must be answered before any ML technique can be incorporated into an
ABM. In this paper | start to explore some guidelines for how to more closely integrate
ABM and ML and will discuss complications that arise when combining ABM and ML
techniques. To illustrate some of these issues, | will describe an integration of a ML
technique within the EI Farol Bar Problem. | will conclude with some discussion of this
integration and a look toward future research.

Keywords: Machine learning, agent-based modeling, framework El Farol Bar
Problem, genetic algorithms

INTRODUCTION

As we pause to reflect on how agent-based modeling (ABM) has changed in the ten years
since SugarScape (Epstein and Axtell 1996), one aspect of ABM that could use more analysis is
adaptation. Though there are notable exceptions like the El Farol Bar Problem (Arthur 1994)
among others, few models make use of an adaptive mechanism within the ABM framework. By
an adaptive mechanism, | refer not to the ability of agents to take different actions, but rather the
ability for agents to come up with a new strategy of how to take action. This is particularly
surprising since the ability to allow agents to adapt to their surrounding is often listed as a reason
to use ABM instead of other modeling techniques. When Holland discussed complex adaptive
systems (CAS) and their relationship to ABM in Hidden Order (Holland 1995), he devoted an
entire chapter to adaptive agents, and specifically mentioned internal models as one of the
mechanisms that define a CAS. Despite this more effort needs to be placed into understanding
adaptive agents. However, as we examine the last ten years of ABM it is important to not only
notice its deficiencies but also to see how these areas can be improved. In a fortuitous

*  Corresponding author address: William Rand, Northwestern Institute on Complex Systems, 600 Foster Street,

Evanston, IL 60208-4057; e-mail: wrand@northwestern.edu.
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coincidence, at the same time ABM research has been gathering momentum, so has machine
learning — an area of artificial intelligence specifically concerned with adaptation and building
internal models. If the ABM community can make use of the knowledge and research developed
by the machine learning community, it would greatly facilitate the study of adaptation within
ABM.

ABM and ML can be combined in a variety of ways and has been examined in the past
(Wolpert, Wheeler et al. 1999). However, in this paper | choose to examine the use of ML to
refine the internal models of agents in an ABM. The first part of this paper presents a framework
for understanding machine learning as a component of ABM, and describes how different
machine learning techniques like genetic algorithms (GAs), neural nets (NNs), and Bayesian
Classifiers can easily be incorporated into many agent-based models. At the high level this
framework consists of two interlocked cycles that examine input, make decisions and generate
output. In this generalized framework, the machine learning algorithm is using the ABM as an
environment and a reward generator, while the ABM is using the machine learning algorithm to
maintain the internal models of the agents.

There are many details that must be answered before any machine learning technique can
be incorporated into even the simplest agent-based model. In this paper, some of these details of
how to build this general framework are discussed. Of course even after a general framework has
been decided upon there are many more questions that still need to be answered, like what
particular technique to use, and how to set the parameters of that technique. This paper will
discuss these complications.

The final section of this paper will illustrate some of these issues with an example. This
practical example will consist of a genetic algorithm implemented within the context of the
El Farol Bar Problem. The design of such an implementation and the consideration of the various
issues involved will be discussed.

THE FRAMEWORK

At a high level ABM and ML both utilize fairly simple algorithmic structures to control
their flow of operation. Roughly these algorithms can be described as: initialize the system,
observe what is happening, refine the system, take actions, and repeat until time is up. To give
this high level description more context I will first discuss the ABM cycle, then the ML cycle and
finally an integrated cycle.

The first cycle is the standard agent-based model cycle and can be broken down into
three steps: (1) initialize the world and a population of agents, (2) each agent observes its world,
and (3) each agent takes an action based on the current observations, and the model repeats by
going back to (2). This cycle becomes an adaptive agent-based model if we incorporate a fourth
step between (2) and (3) where each agent updates their internal model of the world, and decides
what action today based on that internal model. The adaptive ABM cycle is illustrated in
Figure 1.

The second distinct cycle, as seen in Figure 2, is the machine learning cycle and can be
broken down into four steps as well: (1) create an initial internal model, (2) observe the world
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and take note of rewards received, (3) update the internal model, (4) take an action based on the
internal model and the current observations, go back to (2) and repeat.

As is obvious the two cycles are quite similar to each other and thus integrating the
frameworks is not very difficult at all. However how this integration is practically accomplished
could be done in many different ways. In this paper | have chosen to explore the use of the ML
cycle as a model refinement engine for the ABM. Thus the integrated cycle focuses on the ABM
and interrupts its standard flow in step three, by sending data to the ML cycle to handle the
model refinement. This is illustrated in Figure 3.

PRACTICAL DECISIONS

Of course utilizing machine learning techniques within agent-based modeling is not as
simple as describing the framework. There are many practical details that must be addressed
when deciding how to integrate ABM and ML. One question that must be answered is whether
the machine learning technique should be a supervised learning technique (an external teacher
determines whether any action taken was correct or incorrect) or an unsupervised learning
technique (agents take actions and occasionally gain rewards but there is not necessarily a chain
of causation from any action to any reward). Supervised learning requires explicit knowledge of
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what actions provoked what rewards, i.e., a mapping of inputs and outputs. Unsupervised
learning does not require this but instead simply builds a model of how the world behaves.

Another question that must be addressed is whether or not the agent’s own action needs
to be taken into account while building the internal model of the world. In many cases within
ABM, agents assume that they can make decisions about the world as if they were not a part of
the world. This is sometimes called the Wonderful Life Assumption from the Frank Capra movie
It’s A Wonderful Life where James Stewart’s character George Bailey wonders if anything he has
done has made the world a better place. However in many cases like the El Farol Bar Problem,
agents’ actions do influence the world. In fact in the case of the El Farol Bar Problem, since the
only variable of interest is the attendance at the bar, agents’ actions basically define the world.
On the other hand since agent’s actions may have a minimal effect on the world it may be
possible to make the Wonderful Life Assumption and safely ignore the agent’s own action when
building up an internal model. This may actually be the case in the El Farol Bar Problem since
each agent only contributes 1/100 to the total attendance of the bar.

Even after the family of techniques has been decided upon, there are still many specific
algorithms that are more or less useful and must be carefully considered. Neural networks for
instance, are good at classifying large amounts of data fairly quickly, but in the end they do not
yield white box results; that is after they have run for awhile it is very difficult to determine how
they are making their decisions. Decision trees, on the other had, do create very white box
results, but are not very good at classifying continuous data. There are a variety of books that
discuss ML algorithms, their implementations and their pros and cons (Mitchell 1997; Hastie,
Tibshirani et al. 2001).

Even after the particular technique, there are still a large variety of parameters that need
to be set, and tuned in order to work properly within the ABM environment. Much of this is a
matter of art to get the results one desires, but some sets of ML algorithms have more literature
than others regarding advice on how to tune the parameters.

All in all, there are many matters to consider when combining ABM with ML, but the
advantages that one gains from having truly adaptive agents, which can modify not only the
actions they are taking but also the strategies that they use to determine those actions is often
worthwhile.

A CASE STUDY: THE EL FAROL BAR PROBLEM

It is difficult to discuss many of these issues without a particular example to focus the
discussion around. After all in the end a programmer or model builder must actually write some
code to integrate ABM and ML. Thus, it is important to think of how these issues affect actual
model development. In order to illustrate a few of these issues, | will consider one integration in
specific details. | have chose to use the El Farol Bar Problem (Arthur 1994) as an example. This
was an early ABM that included adaptive agents. In short, the model consists of a 100 agents
trying to decide whether or not to attend a bar on a certain night. If they attend and the bar is

1 This is related to Wolpert et al’s wonderful life subworld utility but here I am concerned with a particular
subworld—the one where the agent does not account for their own action—and hence the assumption | am
discussing is less general than Wolpert’s utility function (Wolpert, Wheeler et al. 1999).
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crowded they receive no reward; if they stay home they receive no reward. However, if they
attend and the bar is not crowded (less than 60 attendees in Arthur’s model) they receive a
reward. The only information they have to make this decision is the attendance of the bar the last
week which is printed in the paper and can be remembered over time. So the question was: how
do agents decide which strategy to use to determine whether to attend the bar or not?

Arthur’s original model included a simple ML technique in it. In Arthur’s model all the
agents had a group of strategies. They would take this set of strategies and see which strategy
would have done the best of predicting the bar attendance if they had used it in the past. Since at
each time step a new data point is generated it is possible that the actual strategy from the group
of strategies that each agent will use can change at every time. This is a very simple ML
technique and can be described within the framework of Figure 2. Initialize your group of
strategies by generating some random strategies, like take last week’s attendance double it, or
subtract the third to last week’s attendance from last weeks, or take a running average of the last
three weeks attendances (Step 1). Then at each time step observe how the strategies have done
on the current set of training data, i.e. the previous bar attendances (Step 2). After that, refine
your internal model by selecting the best one given the new data (Step 3). Finally act on the
strategy that reflects your refined model (Step 4) and repeat (at Step 2). This ML technique could
be used for other problems than the El Farol Bar Problem; for instance, Arthur’s technique could
be used to predict stock market price or estimate the rainfall in a certain geographic location.
Thus Arthur’s technique is not particular to the EI Farol Bar Problem and could be replaced by
any number of standard ML techniques.

I wanted to make use of a different ML technique than the one Arthur described. So first |
had to decided whether to use a supervised or unsupervised learning technique. It might appear at
first that it is necessary to use an unsupervised technique since an agent’s action is not directly
responsible for their reward. However since in Arthur’s version of the problem the agents are not
necessarily trying to maximize their utility but rather just trying to minimize their error of
prediction and then take an action based upon that, we can assume that previous time data series
is in fact a supervised training set. Given this assumption we can safely choose a supervised
machine learning technique. Since supervised ML techniques tend to be faster than unsupervised
techniques, in general when there is enough information available to classify the problem as a
supervised problem it is helpful to utilize a supervised ML technique. However, it would also be
possible to use an unsupervised learning method if someone simply wanted to build up a model
of how attendances influenced each agent’s rewards.

Of course it is also necessary to consider whether or not to model the agent’s own action.
However the way this problem has been framed for the agents, they are automatically not making
the Wonderful Life Assumption. This is because agents are predicting the attendance at the bar
and making a decision about whether or not they will attend the bar based on that prediction.
Thus, it can be assumed that their prediction automatically takes into account their own decision.
The agent is asking the ML technique to predict next week’s attendance and is not putting any
restrictions on their request; therefore the prediction should take into account whatever action the
agent will take.

Second, it was necessary to choose a particular machine learning technique. There is no
obvious decision here, but partially since it was originally suggested in Arthur’s paper, | decided
to investigate the use of the genetic algorithm (GA) as originally devised by Holland (Holland
1975). Fogel had previously explored such a technique within the El Farol Bar Problem (Fogel,
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Chellapilla et al. 1999). The GA makes sense in this context because it has the ability to create a
fairly robust time series predictor (by doing simple regression) and it is similar to Arthur’s
original technique, in that it considers a population of solutions, evaluates them, decides which
ones to keep using, changes them slightly and re-evaluates them. In addition the GA is often
described as manipulating schemata and thus may be similar to the human process of induction
(Holland, Holyoak et al. 1986) which is what Arthur’s original model was intended to emulate.
Clearly, then by examining the benefits of various ML algorithms and choosing the one that
seemed to satisfy the task at hand | was able to choose a particular algorithm.

In order to integrate a GA within the El Farol Bar Problem I had to first place the original
El Farol Bar Problem within the context of the Integrated cycle described above. Thus I filled out
the left hand bubble with the details of El Farol Bar Problem. Then I filled out the right hand
bubble with the details of the GA. The result is illustrated in Figure 4.

After | had visualized the integration | had to actually accomplish the task, which
involved not only setting the parameters of the EI Farol Bar Problem but also that of the GA of
each agent. My over-riding goal in this task was to see if | could generate results similar to
Arthur’s original results. Thus | used a set of parameters similar to what Arthur had described for
the El Farol Bar Problem. For the GA, | could have chose to use Fogel’s parameters, but I
decided that those were farther away from Arthur’s original model than | wanted to deviate since
the Fogel’s parameters seemed to require a larger amount of computational resources than
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Arthur’s original technique. Thus instead | decided to choose parameters for the GA that would
more closely imitate Arthur’s original model. In general, it is good to consider two factors when
setting ML parameters: (1) review relevant literature on good parameter settings, and (2) keep
your modeling goal in mind when setting parameters.

CONCLUSION

Over the last ten years, there have been a lot of exciting and interesting developments in
ABM, and the use of truly adaptive agents within ABM is one stimulating promise that is still
being explored. The integration of ML techniques within ABM will hopefully allow for the
development of novel and original models. This paper has discussed a general framework for
these combined algorithms, and has begun to discuss some of the issues that must be addressed.
Finally one integration has been described and used as a case study to further discuss the issues.

In the future, this line of research will continue. The integration of the El Farol Bar
Problem with a variety of ML techniques and a thorough analysis of the results is warranted. As
is consideration of other ABMs and how to integrate them with ML algorithms. As more and
more of these integrations are attempted it is hoped that a suite of best practices will develop that
can serve as advice and eventually form the basis for a more concrete set of guidelines for future
model developers. The scope and use of ABM will be greatly expanded by the increased use of
strategically adaptive agents.
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ABSTRACT

Available information about real-world agents is often limited to external observations.
BEE (Behavior Evolution and Extrapolation) uses a faster-than-real-time agent-based
model of the environment to characterize agents’ internal state by evolution against
observed behavior, and then predict their behavior, taking into account the dynamics of
their interaction with the environment.

Keywords: Plan recognition, plan inference, evolution, prediction, emotion,
BDI, swarm intelligence, digital pheromones, dynamics.

INTRODUCTION

Many application domains require reasoning from external agent behavior to an estimate
of internal state, often motivated by a desire to predict the agent’s behavior (the “plan
recognition” or “plan inference” problem). Work to date focuses almost entirely on recognizing
the rational (not emotional) state of a single agent (not an interacting community), and frequently
requires explicit communications between agents. Many problems deviate from these conditions.

e Adding agents leads to a combinatorial explosion that can swamp conventional
analysis.

e The dynamics of the environment can frustrate an agent’s intentions.

e Agents often hide their intentions (and even their presence), rather than intentionally
sharing information.

e An agent’s emotional state may be at least as important as its rational state in
determining its behavior.

Adversarial domains, including military combat, competitive business tactics, and multi-
player computer games, exhibit these constraints.

BEE (Behavioral Evolution and Extrapolation) is a novel approach to recognizing the
rational and emotional state of multiple interacting agents based solely on their behavior, without
recourse to intentional communications. It is inspired by techniques used to predict nonlinear

* Corresponding author address: H. Van Dyke Parunak, NewVectors LLC, 3520 Green Court, Suite 250,
Ann Arbor, Ml 48105; e-mail: van.parunak@newvectors.net.
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dynamical systems by continually fitting a representation of the system to its recent past
behavior. For nonlinear dynamical systems, the representation is a closed-form mathematical
equation. In BEE, it is a set of parameters governing the behavior of software agents representing
the individuals being analyzed. BEE currently characterizes and predicts the behavior of agents
representing soldiers in urban combat (Kott 2004).

We survey relevant previous work (including both plan recognition and prediction in
nonlinear dynamical systems), describe BEE’s architecture, and report results from experiments
with the system. Further details that cannot be included here for the sake of space are available in
an on-line technical report (Parunak, Brueckner et al. 2005).

PREVIOUS WORK

Plan Recognition in Al

One often describes an agent’s cognitive state in terms of its beliefs, desires, and
intentions (Rao and Georgeff 1991). An agent’s beliefs are propositions about the state of the
world that it considers true, based on its perceptions. Its (possibly mutually inconsistent) desires
are propositions that it would like to be true. Its intentions, or goals, are a subset of its desires,
believed to be consistent, that it selects, based on its beliefs, to guide its actions.

Goals guide actions. An agent’s past actions should reflect its goals, and knowledge of its
goals enables predictions of future actions.

Reasoning from an agent’s actions to its goals is called “plan recognition” or “plan
inference.” This body of work (Carberry 2001) is rich and varied. It covers both single-agent and
multi-agent plans, intentional vs. non-intentional actions, speech vs. non-speech behavior,
adversarial vs. cooperative intent, complete vs. incomplete world knowledge, and correct vs.
faulty plans, among other dimensions. Plan recognition usually supports a higher-level function,
such as predicting the agent’s future actions.

An agent’s plan is useful input to predicting its future behavior, but hardly sufficient.
There are at least two other influences, one internal and one external.

The external influence is the dynamics of the environment, which may include other
agents. Rational analysis of an agent’s goals may help us predict what it will attempt, but any
nontrivial plan with several steps will depend on the environment’s reactions, for two reasons.

e The environment may do things on its own that interfere with the desires of the agent
(Michel 2004).

e Most interactions among agents, and between agents and the world, are nonlinear.
When iterated, these can cause trajectories to diverge rapidly.

Actual simulation of futures is the only one we know to address this problem.
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Human agents are subject to an internal influence, emotional state, which can modulate
their decision process and focus of attention (and thus their perception). Sometimes emotion can
lead an agent to act in a way that logically appears irrational.

Most work on plan recognition for prediction focuses on the rational plan, and does not
take into account either external environmental influences or internal emotional biases. BEE
integrates all three elements.

Real-Time Fitting in Nonlinear Systems Analysis

Many systems can be described by a time-varying state vector, often analyzed as vector

dx -
—=f(X)
differential equations, dt .

When f is nonlinear, the system can be formally chaotic, making long-range prediction
impossible. However, one can anticipate the system’s near-term behavior, by fitting a convenient
functional form for f to the system’s trajectory in the recent past, and then extrapolating this fit
(Figure 1, (Kantz and Schreiber 1997)). Iterating this process provides a limited look-ahead.

This approach requires systems that can efficiently be described by mathematical
equations that can be fit using methods such as least squares. BEE extends this approach to agent
behaviors, which it fits to observed behavior using evolution.

ARCHITECTURE

BEE predicts the future by observing the behavior of agents in a fine-grained simulation.
Key elements of the architecture include the pheromone infrastructure through which agents
interact, the model of an individual agent, the information sources that guide agents, and the
evolutionary cycle that they execute.

Pheromone Infrastructure

BEE must keep pace with the battle. Thus we use a . >b
simple agents coordinated using pheromone mechanisms
(Brueckner 2000). This infrastructure runs on the nodes of a P
rectangular lattice. Each node maintains a scalar value for || .-~ Qi

each flavor of pheromone, and provides three functions: |||
aggregation of deposits from individual agents to fuse ||
information across multiple agents and through time, NN
evaporation over time to provide truth maintenance by
discarding obsolete information, and diffusion to nearby
places to share information with other agents. FIGURE 1 Tracking a
nonlinear dynamical system. a)

Each page of the timeline is a complete pheromone |State space; b) trajectory; c)
field for the world at the BEE time t represented by that page. |recent past observations; d)
Movement based on pheromone gradients is a simple process, |extrapolated fit.
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so this system can support realistic agent populations without excessive computer load. In our
current system, about 24,000 agents execute concurrently on a stock desktop computer. Two
features of the environment permit it to be scaled using multiple processors. First, agents interact
only with their local neighborhood. Second pheromones below a certain threshold are deleted, so
they propagate only to a certain radius.

Agent Model

BEE’s agents are inspired by our previous work on fine-grained agents that coordinate
their actions through digital pheromones in a shared environment (Parunak, Brueckner et al.
2004), and the success of previous agent-based combat modeling.

Agents follow local gradients of functions over digital pheromones. Their movements
change the deposit patterns. This feedback loop, together with evaporation and propagation in
the environment, supports complex patterns of interaction and coordination among the agents
(Parunak, Brueckner et al. 2003). Table 1 in (Parunak, Brueckner et al. 2005) shows the BEE’s
current pheromone flavors. For example, a living member of the adversary emits a RED-ALIVE
pheromone, while roads emit a MOBILITY pheromone.

Our soldier agents are inspired by EINSTein and MAUI. EINSTein (llachinski 2004)
represents an agent as a set of six weights, each in [-1, 1], describing the agent’s response to six
kinds of information (e.g., number of alive friendly; distance to objective). A positive weight
indicates that the agent is attracted to the entity described by the weight, while a negative weight
indicates that it is repelled. MANA (Lauren and Stephen 2002) extends EINSTein. Among other
changes, it defines a set of triggers (e.g., reaching a waypoint, being shot at) that shift the agent
from one personality vector to another.

The personality vectors in MANA and EINSTein reflect both rational and emotive
aspects of decision-making. Attraction or repulsion to friendly or adversarial forces in various
states of health is a component of emotion (e.g., fear, compassion, aggression). The notion of
waypoints reflects goal-oriented rationality.

BEE embodies an integrated rational-emotive personality model.

A BEE agent’s rationality is a vector of seven desires, which are values in [-1, +1],
including ProtectRed (the adversary), ProtectBlue (friendly forces), and AvoidDetection. For
example, a negative value of ProtectRed indicates a desire to harm Red. Table 2 in (Parunak,
Brueckner et al. 2005) shows which pheromones attract or repel an agent with a given desire, and
how that tendency translates into action. For example, an agent with a high positive desire to
ProtectRed will be attracted to RED-ALIVE, RED-CASUALTY, and MOBILITY pheromone,
and will move at maximum speed.

The BEE’s personality model (Parunak, Bisson et al. 2006) is based on the Ortony-Clore-
Collins (OCC) framework (Ortony, Clore et al. 1988). OCC define emotions as “valanced
reactions to agents, states, or events in the environment.” MANA'’s trigger states capture this
notion of reaction. BEE goes further by recognizing that agents may differ in their sensitivity to
triggers. For example, threatening situations stimulate fear, but a given level of threat produces
more fear in a new recruit than in a seasoned veteran. Thus we model not only Emotions, but
Dispositions (one per Emotion). Dispositions are relatively stable, and stay constant over the
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time horizon of a run of the BEE, while Emotions vary based on the agent’s Disposition and the
stimuli to which it is exposed.

Interviews with military domain experts identified the two most crucial emotions for
combat behavior as Anger (with the corresponding disposition Irritability) and Fear (whose
disposition is Cowardice). Table 3 in (Parunak, Brueckner et al. 2005) shows which pheromones
trigger which emotions. For example, RED-CASUALTY pheromone stimulates both Anger and
Fear in a Red agent, but not in a Blue agent.

A non-zero emotion modifies the agent’s actions. Elevated Anger increases the likelihood
of movement, weapon firing, and an exposed posture. Elevated Fear decreases these likelihoods.

Information Sources

The flexibility of the BEE’s pheromone infrastructure permits the integration of
numerous information sources as input to our characterizations of entity personalities and
predictions of their future behavior. Our current system draws on three sources of information,
but others can readily be added.

Real-world observations.—Observations from the real world are encoded into the
pheromone field each increment of BEE time, as a new “current page” is generated.

Statistical estimates of threat regions.—Statistical techniques® estimate the level of
threat to each force (Red or Blue), based on the topology of the battlefield and the known
disposition of forces. For example, a broad open area with no cover is threatening, especially if
the opposite force occupies its margins. The results of this process are posted to the pheromone
pages as “RedThreat” pheromone (representing a threat to red) and “BlueThreat” pheromone
(representing a threat to Blue).

Al-based plan recognition.—While plan recognition is not sufficient for effective

prediction, it is a valuable input. We
dynamically configure a Bayes net based
on heuristics to identify the Iikely goals
that each entity may hold.” The
destinations of these goals function as
“virtual pheromones.” Ghosts include
their distance to such points in their
action decisions, achieving the result of

- - - ‘
gradient _ following Wlth_out_ _ the N W DN W ' Ghost time ©
computational expense of maintaining a Insertion Horizon = Prediction Horizon
distinct pheromone flavor. Measure Ghost fitness £ Observe Ghost prediction
Il-la
The BEE Cycle FIGURE 2 Behavioral emulation and extrapolation

The major innovation in BEE

! This process is developed by Rafael Alonso, Hua Li, and John Asmuth at Sarnoff Corporation.
2 This process is developed by Paul Nielsen, Jacob Crossman, and Rich Frederiksen at Soar Technology.
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extends the nonlinear systems technique of continuous fitted prediction to agent behaviors.

Figure 2 summarizes the BEE process. Each active entity has an persistent avatar that
continuously generates a stream of ghost agents representing itself. The modeling entity
combining an avatar and its ghosts is a polyagent (Parunak and Brueckner 2006). The avatar
inserts its ghosts into the recent past in a faster-than-real-time simulation. It evolves their
personalities against the behavior it observes in the real world, then lets the fittest ghosts run into
the future to explore alternative future behaviors, and fuses these into a single prediction.

EXPERIMENTAL RESULTS

We test BEE in experiments in which human wargamers make decisions that are played
out in a battlefield simulator. The commander for each side (Red and Blue) has at his disposal a
team of human operators who set waypoints for individual units in the simulator. Each puckster
is responsible for four to six units. The simulator moves the units, determines firing actions, and
resolves the outcome of conflicts.

Fitting Dispositions

To test our ability to recognize emotions from behavior, one Red operator secretly selects
two of his units to be cowardly (“chickens”) and two to be irritable (“Rambos”). He moves each
unit according to the commander’s orders until the unit encounters the emotion’s triggers. Then
he manipulates chickens as though they are fearful (avoiding combat, avoiding Blue), and moves
Rambos into combat as quickly as possible.

The difference between the two disposition values (Irritability - Cowardice) of the fittest
ghosts proves an excellent indicator of their entity’s emotional state. We maintain a 800-second
exponentially weighted moving average of this Delta Disposition, and declare the unit to be a
chicken or Rambo if this value passes a

negative or positive threshold, respectively
(currently, £ 0.25).

Cowards Found vs Percent of Run Time

14

Figure 3 compares our emotion 12
detector with the judgments of human
officers. We played two chickens in each of
11 experiments. The plot shows how many
had been detected at a given point in the
runs. For example, the square at (60%, 10)
means that the total number of chickens
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BEE was able to detect chickens earlier than 0% 20% 40% 60% 80% 100%
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FIGURE 3 BEE vs. human

In addition to units intentionally

played as emotional, BEE sometimes detects
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other units as cowardly or brave. A2AY , Median
Analysis shows that these ‘ ‘ ‘
characterizations are
appropriate: units that flee in the
face of enemy forces or
weapons fire are detected as
chickens, while those that stand
their ground or rush the
adversary are denominated as
Rambos.
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that its unit might follow. The set of such paths for all ghosts embodies a number of distinct
predictions, including the most or least likely future, the future that poses the greatest or least
risk to the opposite side, the future that poses the greatest or least risk to one’s own side, and so
forth. Here, we select the future whose ghost receives the most guidance from pheromones in the
environment at each step along the way. In this sense, it is the most likely future.

We evaluate predictions spatially, comparing an entity’s location with the prediction
made 15 minutes earlier. Figure 4 compares BEE’s prediction errors (median over 20 Red units)
with those from a game-theoretic predictor based on linguistic geometry (LG) (Stilman 2000) on
a typical run. The LG predictor can produce only one prediction (a 15 minute trajectory for each
unit) about every 15 minutes (the stemmed points in the Figure), so the plotted errors for times in
between these computations are based on a world state that becomes increasingly obsolete as
time passes until a new prediction is issued. The BEE prediction is updated at each time step, by
reading off from the any-time extrapolation process. BEE outperforms the LG predictor not only
between successive LG predictions, but also when the LG prediction is current (stemmed LG
points).

CONCLUSIONS

BEE reasons from observed external behavior to internal state using a faster-than-real-
time simulation of swarming agents, coordinated through digital pheromones. This simulation
integrates threat regions, a cognitive projection of the agent’s beliefs, desires, and intentions, a
model of the agent’s emotional disposition and state, and the dynamics of environmental
interactions. By evolving agents in this rich environment, we can fit their internal state to their
observed behavior. In realistic wargames, the system successfully detects deliberately played
emotions and makes reasonable predictions about the entities’ future behaviors.

BEE only models internal state variables that impact the agent’s external behavior. It
cannot fit variables that the agent does not manifest externally, since its evolutionary cycle
compares the agent’s outward behavior with that of the real entity. This limitation is serious if
our purpose is to understand the entity’s internal state for its own sake. If we are fitting agents to
predict their behavior, the limitation is much less serious. State variables that do not impact
behavior, invisible to a behavior-based analysis, are irrelevant to a behavioral prediction.
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BEE lends itself to extension in several directions.

e A dynamical simulation can integrate many other inputs besides the current ones,
requiring less engineering than more traditional ways of reasoning about multiple
knowledge sources.

e Our repertoire of emotions is a small subset of those that might be useful for
understanding and projecting behavior.

e The mapping between an agent’s psychological state and its behavior is not one-to-
one. Multiple internal states might be consistent with a given observed behavior
under one set of conditions, but yield distinct behaviors under others. If the recent
environment confounds such distinct states, we will be unable to distinguish them. As
long as the environment stays in this state, our predictions will be accurate, whichever
internal state we assign. If the environment then shifts to one under which the
different states lead to different behaviors, using the previously chosen internal state
will yield inaccurate predictions. One approach is to probe the real world, perturbing
it to stimulate distinct behaviors from entities whose psychological state is otherwise
indistinguishable. Such probing is an important intelligence technique. BEE’s faster-
than-real-time simulation may enable us to identify appropriate probing actions.

e BEE has been developed for adversarial reasoning in urban warfare. Other potential
applications include computer games, business strategy, and sensor fusion.
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ABSTRACT

The agent-based modeling and simulation (ABMS) community has long recognized a
need for concise, complete, and implementation-neutral representations of agent-models,
and for modeling tools that do not require significant computer programming experience.
We discuss earlier efforts to address these needs, arguing that proposed representations
were typically too high-level and did not cover behavior. It may be that these weaknesses
were insurmountable at the time—and that it is only now, with the availability of
relatively mature Domain Specific Languages (DSLs) and Model Driven Software
Development (MDSD) tools that these needs may finally be met. We justify this claim by
identifying significant issues modelers face in using Genera Purpose Languages (GPLS)
for agent-based models and how these issues might be overcome by using DSLs. We
describe the specific tools we intend to employ in that effort and how we plan to use
those tools, and we propose a general meta-model for ABMS.

Keywords: Agent-based modeling and simulation, domain specific languages, model
driven software devel opment

INTRODUCTION

Agent-based modeling often demands sophisticated computer programming skills,
limiting adoption of this revolutionary technique. While high-level mathematics is a core training
requirement for physical, life, and socia sciences, programming rarely is—effectively denying
the power of agent-based modeling to a large swath of researchers and arguably biasing
explanations toward traditional equation-based approaches. In addition, while significant efforts
have been made to develop frameworks that leverage programming resources and provide model
exploration tools to non-programmers (Parker 2000; Inchiosa and Parker 2002), the models
themselves typically have been expressed in general purpose languages such as Java, which as
we argue below, are neither transparent nor particularly expressive under many usages. These
issues, coupled with a lack of consistent representations, have made it quite difficult to share
models and to expose them to outside review. The authors and others have long sought solutions
to these issues.

Corresponding author address. Miles T. Parker, 24 Gann Road, East Hampton, NY 11937; email:
milesparker @gmail.com.
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For example, Gulyas et al. discussed the potential of XML (e.g., Multi-Agent Modelling
Language or MaML) as an agent-representation language as early as 1999. In the same period,
Parker argued that strict compositions of hierarchical collections (“scapes”) with high-level
spatial and execution model abstractions would facilitate the use of a declarative approach to
model design in general (2000). More recently, the Repast team has demonstrated tools that
allow extensive portions of model definitions to be made within XML (North et al. 2005). These
approaches provide more transparent model representations, but there are typically still large
gaps in what can be represented at such a high level. In particular, the proposed ABMS schemas
typically have focused on structural issues and have left behavioral issues aside. As such, these
schemas have not yet provided an effective and generic way to completely specify agent-based
models. While one could argue that part of this weakness stems from the declarative nature of
most of the proposals and that the difficulties encountered are largely representational, there may
be other issues at hand.

DOMAIN-SPECIFIC LANGUAGES AND META-MODELS

For many purposes, agents are naturally implemented as objects. Fortunately, object-
oriented (OO) imperative languages are readily available to implement these objects. However,
there are two important issues with this approach.

First, OO languages are general-purpose by design and so, to accommodate the universe
of possible uses, carry complex syntax and semantics, very extensive Application Programming
Interfaces (APIs), and idiomatic (but very general) usage patterns. Requiring such general and
extensive knowledge is like requiring a person who simply wants to travel from Philadelphia to
Boston to memorize the commercial route-map for the entire country and to become conversant
with the maintenance procedures of the Boeing 737 to do so. Conversely, GPLs lack articulate
idioms that fit a specific usage or context.1 These kinds of idioms—e.g., shared agreement on the
context of a particular communication and a “way of speaking” that uses this agreement to shape
powerful abstractions and analogies—are what turn the symbols and structures of human
language into artifacts of expressivity and beauty.? Doing without these idioms is like requiring
text and instant messengers to use complete grammatical sentences with no abbreviations; or it is
like requiring that the works of William Shakespeare be edited to replace any archaic language
with contemporary “equivalents.”

Second, mainstream OO languages are compiled and static. We can distinguish these
from “scripting” languages such as Javascript, Python, and Perl, which are interpreted and
dynamic.3 At the risk of making broad generalizations about controversial and complex issues, it
can be argued that there are good reasons for these language design choices: they can encourage

1 For an excellent example of how modeling and DSLs can address this issue by using a simple state machine
language, see Voelter’s (2006) article.

2 We leave discussion of what idioms may be most appropriate and powerful for ABMSs to a later paper.

3 Compiled languages convert language-level code to machine code in one step (i.e., at “compile-time”).
Interpreted languages do so while